
Web Utilization in Controls at Fermilab

K. Cahill B. Hendricks T. Zingelman
Fermi National Accelerator Laboratory
PO Box 500, Batavia, IL 60510, USA

Abstract

 The World Wide Web is utilized at Fermilab in support of
controls development, maintenance and accessibility. This
paper will examine the web's utility in support of
application program development, application specific
help, data acquisition error and statistics reporting, GIF
image production including application batch scripting,
and a Java front end interface to X-Window console
applications.

1 Introduction

 The use of the World Wide Web, WWW, and its associa-
ted tools continuously increases at Fermi National
Accelerator Laboratory. The development and operation
of the control system relies and depends upon the
information presented by Internet browsers to developers
and operators of the accelerator complex.
 This paper will focus upon the utilization of the Hyper-
Text Markup Language, HTML, and the language, Java, in
their support of the development, maintenance, and
operation of the control system.

2 HTML

 HTML is the documentation standard within the Accele-
rator Controls Department at Fermilab.

2.1 Supporting development

 Linked HTML pages are the first and only place of
reference for the application program developer1. The
ACNET console library, CLIB, consists of more than one
thousand entry points. Each of these is described along
with links to related functions and include files.
 Users searching for hardware components to implement a
control’ function look to the hardware capability specifi-
cations, as well as database and driver specifications,
which are found within linked HTML pages2.

2.2 Supporting maintenance

 Several central processes participate in collecting error,
traffic and status information. The user task interfaces of
the data acquisition and setting services forward reports
containing setting, received error, and traffic usage to
central processes on full queues, every few minutes and on
task exit. These resulting reports encompass more than
400 process generated HTML documents3:

• all data acquisition errors
• filtered, sorted, and annotated

• organized for dispatch by system experts
• several up to the moment status reports

• many < 10 minutes old
• by node, crate, slot, and trouble type

• traffic reports of consoles and front ends
• save/restore status reports
• summary of all device settings

 These files are often hyperlinked to each other, are the
day 's first and last view of control system health for
management, and generally maintain information for a one
week period. One of these documents describes all
bypassed alarms in the control system. One describes the
range of settings seen by a device on a particular day.
Several processes contribute to these reports. The process
that maintains HTML pages of all settings within the
control system also forwards those settings to a settings’
datalogger.

2.3 Supporting operations

 All applications support online help4. The keycap on
most consoles F15 key has been replaced by a help key.
The console environment is linked to web browsers to
warp the browser to the appropriate help page. The help
pages of applications are HTML files. A help editor edits
these HTML files in place. An applicationí s help may
include embedded HTML links to other documentation.
 Special production of .gif image files is tied to the web.
Users may make .gif copies of application windows and
email themselves a location to paste into their browserí s
link window. Users may also insert jobs into scheduled
batch queues that will update web pages with images by:

• running a console application script on an
unused console slot

• creating and copying a .gif image file
• linking the image to a web page

3 Java

 This control system awaits the appearance of the tools,
platforms, and paradigms that will spark the project
leading to the next generation application programming
environment.

3.1 The appeal

The Fermilab Accelerator Control System console
environment is X-Window based with a large central
library generally supporting the C language programmer.
Commercial relational databases, other languages such as
C++, and web based tools have some impact, but the next

generation of operator controls is imagined to truly exploit
software development tools distinctly more sophisticated
and productive rendering much of our graphical user
interface library built upon X-Windows as obsolete.

Proprietary software architectures are disdained.
Software tools with the reach and impact of X-Windows
are anticipated. As Java emerges, the language and
development environment are examined with the following
questions in mind:

• can it become X-Windows++?
• is the language simplicity a plus?
• is the development environment futuristic?
• will Java beans enable commodity computing?
• will most software become web-centric?
• is it fun, exciting, and rewarding for the staff?

3.2 The console environment to emulate

 As an introduction to the first Java applet, it is appropriate
to describe Fermilabí s console environment. It is X-
Window based, supporting:

• 6 concurrent user written applications
• 17 windows, more or less
• two X-Window managers, alphanumeric and graphical
• hundreds of users, each requiring:

• X-Window software
• an account
• some knowledge to start a console
• fair amount of RAM

3.3 Java console project goals

 The JavaConsole project aims to support concurrent
applications, offer real-time updates of alphanumeric
windows and snapshot updates of graphical windows.
Additional console security is provided through a WebUser
console class implementation supporting read only
performance, no access to shared sensitive data, and
offering no hardcopy resources. The result provides
Fermilab console accessibility to anyone with a web
browser.

3.4 Java console implementation

 The development of the Java applet was coupled with
the development of a threaded server using a byte protocol
connecting the alphanumeric X-Window manager and the
applet. Simulated Xlib calls result in socket writes, faked X
events are generated by socket reads, keystrokes are
echoed, and the resulting applet is a browser capable front

end to a Fermilab console. Some performance
enhancements were necessary, such as giving the applet

cursor control, as round trip times to handle mouse motion
events introduced sluggishness.

This applet allows any user with access to a browser
access to all of the hundreds of console applications.
Graphical windows and applications are supported in a
lesser manner. Since many graphical applications perform
thousands of X operations per second, no attempt is made
at this time to emulate the X behavior of the graphics
manager in Java. Instead, screen snapshots, initially
supported through .gif copies of application windows are
posted to a single graphics window. The .gif copy
performance was somewhat disappointing, taking about 8
seconds to capture and display an image. Consequently, a
compressed, private protocol was extended and
implemented in the Java applet. Graphical windows are
captured, transmitted, and displayed in under two seconds
on a LAN.
 This applet has been downloaded and run on several
platforms, operating systems, and browsers. The write
once, run anywhere capability has been demonstrated, but
not without testing and some implementation
compromises.
 The Java development environment supporting this
project is Symantec í s Visual Cafe. The software
engineering tools in this and other development sets are
easy to learn, well integrated, and a joy to use. The
development cycle is very quick. The project began using
the Java Development Kit, JDK version 1.02, and has since
moved to JDK version 1.1.

4 Conclusions

 The web and its tools are essential to the development,
maintenance, and operation of the accelerator complex.
The web is the common, acceptable repository for
documentation. Automatically generated reports enhance
the diagnostic toolset. Dynamic software development
environments supporting web based application
development promise to fulfill the software engineering
goals of drag and drop, code generation and write once, run
anywhere technology.

References

[1] www-bd.fnal.gov/consolesii.html
[2] www-bd.fnal.gov /controls/micro_p/micro_p.html
[3] www-bd.fnal.gov/errors/
[4] www-bd.fnal.gov/webhelp_edit/menu.html
[5] cns40.fnal.gov/javaconsole/autogen_javaconsole.html

