
Building Controls Software around an Object Oriented Database

Kris Kostro
CERN, SL Division, CH-1112 Geneva 23, Switzerland

Abstract

The use of Object Oriented (OO) techniques has become
popular in all areas of software technology and HEP
control systems have not been excluded from this trend. In
the course of modernisation of the CERN SPS
Experimental Areas control software we designed and
implemented an OO database to hold the configuration
data for equipment and beams. With the beam lines and
equipment defined in the new database, control facilities
are being added by incrementally enhancing the classes
and adding new methods to the database schema. Using the
OO database helps to design the new system in a
transparent way. Real-world objects such as beam lines or
crates are uniquely mapped to the corresponding objects in
the database. The new database allows seamless
integration of data into programs written in OO languages
such as C++ and Java. The WWW interface to the database
gives a familiar look and feel and has been provided with
relatively little effort.

In this paper we present an overview of the project and
the employed methods. The choice of the database
management system, the implementation of the Beam
Instrumentation (BI) database and its use in controls as
well as the benefits of the approach will be discussed in
some detail.

1 Experimental areas of SPS and their controls

The secondary beam lines of the SPS at CERN are
located downstream of the SPS primary targets: T1 in the
West Area and T2, T4 and T6 in the North Area. These
beam lines serve a variety of experiments and test facilities
often installed for several years or just for a few weeks.
The beam lines have therefore to be adapted continuously
to the changing needs. To accommodate for this, the
control system has to contain facilities for an easy
installation of new equipment even during operation.

The control system for experimental areas provides
facilities for controlling the beamline equipment by
experiments in an individual manner. Experiments have
their individual permissions, which restrict equipment
access to their beam line, and other beam lines are not
visible to them. Another important function of the EA
controls is surveying the access doors in the zone and
verifying the position of some critical equipment such as
the wobbling magnets.

The original control system of the Experimental Areas
dates from 1976, and it was based on NODAL programs
running on NORD computers with CAMAC for equipment
interface. In 1994/95 the control system was upgraded and
a new system architecture, similar to the one used in LEP
was introduced [1]. This architecture is often referred to as

the “ standard model”. NORD machines were replaced by
HP-UX workstations at the control room layer and by PCs
running the LynxOS operating system on the front-end
layer, leaving the equipment control layer unchanged. The
large investment in hardware at the level of CAMAC and
below makes the replacement costs prohibitive so that new
low-level equipment control is introduced on case-by-case
basis. To avoid rewriting the large suite of application
programs written in NODAL over the preceding 20 years
the NODAL programming environment was recreated for
the HP-UX operating system. This approach has helped to
replace the obsolete NORD computers, but the many, often
little understood NODAL programs were left in place and
this constitutes now the biggest problem for the
Experimental Areas controls. The software interconnec-
tions of this system are represented at the left-hand side of
Figure 1. The right-hand side represents the new software
connectivity and will be discussed later.

2 Evolution of the EA controls

The large number of programs written in an obsolete
language, the little knowledge we have about them and the
limited manpower make it impossible to replace all the EA
controls in one big project. Since the NODAL programs
use their own data structure to store data and interact
between themselves heavily, it is also difficult to replace
them in an incremental way. Fortunately the project to

NODAL
application

C
application

SL-EQUIP
NC/RPC
TCP/IP

O2Web
server

C++
application

O2Shell

CORBA
server

C
lass Library

EquipmentEquipment

S
L-E

Q
U

IP

SL-EQUIP

MMH

MMH

MMH

SL-EQUIP

HP-UX

Data Modules

LynxOS

CAMAC O2
Server

VME

Figure 1

replace the Beam Instrumentation (BI) database of
connections and addresses has offered us the opportunity
to slowly migrate the control system to a new environment.
OO techniques employed in this project provide a
infrastructure on which the new controls software can be
built.

2.1 The Beam Instrumentation database

The database of the electronics modules and their
connections has been one of the most complicated pieces
of software ever written in NODAL, and it represented an
effort of several man-years. This database fulfils several
functions in the current system. The obvious one is to keep
track of used racks, crates and modules and their
interconnections. There are about 5000 physical items in
the database. It is also used for creating new equipment
according to equipment templates. The system scans the
database searching for free channels and allocates them to
the new equipment. Calculating addresses of equipment is
another capability of this system. Every equipment type
has its own addressing program. Modules can be wired
together to create a common facility, called system and
system channels can be used in equipment and other
systems. With about 60 equipment and 30 system types
(and almost as many addressing variants) the complexity
of this database was obvious. With maintenance becoming
more and more difficult, the replacement of this database,
responsible for the equipment address generation, became
an absolute necessity but it has also been taken as a
challenge and opportunity to introduce new techniques.

3 New software system for the Experimental Areas

3.1 The new database choice

From the beginning we wanted, if possible, to use an
Object Oriented database. The main reason was that, being
interested in OO techniques, we wanted a database, which
is well integrated into this environment. The ODMG –
Object Database Management Group defines language
bindings to allow the database to be accessed in a
transparent way from OO languages such as C++ or Java.
Another reason is that an OO DBMS is inherently better
suited to represent complex data structures than a relational
DBMS. It is often stated that the performance of an
OODBMS is superior for complex data. Recent
investigation in the HEP community [2] showed 4-50
times better performance for typical physicist queries. At
CERN the Objectivity OODBMS was chosen by the RD45
project for performance reasons and for support for very
big databases in the order of terabytes. Our choice criteria
were different: we were looking for connectivity,
compliance to standards to protect our investment and for
development tools.

The system which meets these requirements the best, is
O2 from O2 Technology. The offered connectivity is
O2Web to access the database from a WWW browser, a
CORBA server to access the database from OO
applications distributed over the network, and a bridge to
relational systems such as Oracle. C++ and Java bindings

provide a transparent access to database objects and a C
interface exists as well. The database can be queried with
the OQL query language from any of these languages or
from the O2Shell. OQL allows using class methods in the
query (among other features) and is part of the ODMG
standard.

The market for OODBMS, although rapidly growing, is
still relatively small, compared with the one for RDBMS.
Because of this, the price for such systems is still
relatively high and there is no well-established market
leader. This should change in the near future given that the
OO technology will continue to gain ground.

3.2 Implementation of the new database

After installing O2 in November 1996 we started the
implementation by defining the classes of the database
schema. Some of the classes such as Rack, Crate, Module
correspond to real-world objects and are obvious to define.
Other classes such as equipment template represent an
abstract idea and the relation between the BI equipment
and it' template is less obvious. Flexibility was the
highest priority in designing the classes of the schema and
much effort was invested there. We anticipate that the
database schema will evolve in the future and it will be
used by other applications so that we tried to separate out
different views of objects. For instance we separated out
the physical, and the control aspects of experimental
equipment, which was not necessarily the case before.
About 50 classes have been defined of which 20 are key
classes, such as BeamSegment, ExpEquip or Crate, and
represent key ideas or real-world entities. Other classes are
helper classes or are used merely as data types.

A substantial effort went to the population of the new
database and several C ++ programs were written to
generate objects based on data extracted from the NODAL
database. Another laborious task was understanding and
implementing the numerous addressing algorithms.

When implementing a database, the user interface is one
of the most time-consuming components. Initially we
planned to implement a Motif-based interface for which
there is some support from O2 tools. Feeling that Web-
based interfaces are gaining on importance, we decided
adopt a WWW approach. This is supported by the O2Web
tool, which provides the first, rudimentary interface to the
database at no development cost. Some customisation is
then needed and can be done on a class-by-class basis in an
incremental way. With the default interface the objects are
identified by their class name which is obviously not very
convenient for navigation. A small, one-line method
returning the name of the object is normally sufficient to
overcome this limitation. Another problem with the default
interface is that when navigating from object to object, the
URL is extended every time with the object reference. For
some databases, where navigating in circles is possible (it
is enough to have a back-reference) this can lead to very
long URL, hampering the performance. To overcome this a
get_query() method, with the OQL query leading to this
object, can be provided, which will break the circle. On a

typical Web page 1 attributes and references are
represented as a list with square bullets. Lists of objects are
bulleted with circles. All references are clickable.

Another case of HTML generation occurs when
customising the default page is not sufficient, i.e. when we
want to personalise the look of the object page, point to
another Web page or make input to the database with
forms. This can be done by customising the html_header()
method. This way buttons can be easily added to invoke an
action on the object or to spawn a form to submit data to
the database.

When using forms two methods are necessary: one
method to display the form, and a second method to
analyse the content of the form and perform an adequate
action such as doing a transaction on the database to
update it. All this leads to very straightforward, but
monotonous programming. The customising of Web pages
probably needs some improvements so that this rather
easy, but still time-consuming task, can be simplified.

One of the big advantages of the Web interface is that it
is easy to sell to the users. Everybody knows how to
navigate with a browser so that the look-and-feel is
familiar. It is also easy to insert references to the database
objects into other documents by simply grabbing the URL.
One of our users started immediately to write scripts to get
surveying information out of the database.

To resume, even if the Web interface is basically limited
to one-level interaction, other advantages outweigh it when
compared with X-based interfaces. With the WWW
technology evolving rapidly and being integrated with
other products it is also an interesting investment into the
future.

3.3 Using O2 in controlling beam lines

Having implemented the BI database, the beam line
configuration and the equipment information are readily
available. Equipment is seen by experiments under
different names (in fact an equipment such as a bending
magnet can be seen as BEND1 by one experiment and as
BEND3 by another one) which is easily solved by creating
a named equipment reference. Beam lines are built from
beam segments, which are already in the database.

What we need is an interface to the physical equipment
to be able to read and set attributes such as magnet current
or the position of collimator jaws. In fact there is no
difficulty in calling equipment access functions, via the
SL-EQUIP package[3], from equipment object methods.
The corresponding O2 clients have to be linked with the
SL-EQUIP library as it is shown in Figure 1.

The idea of equipment having properties (or attributes in
other words), which can be read and/or set is a good
paradigm for the equipment status and for the equipment
control. The NODAL-based SPS control system used it
extensively. The database is an excellent place to store
some static attributes such as equipment settings and
limits. Other attributes can change very frequently so that
we have to access them directly from the equipment. In

1 An example page was foreseen in this place but it could not be

produced on this space in an acceptable quality.

this case only the type and addressing information is stored
in the database. A special case is when an attribute from
the equipment has a setting and maybe tolerance as well,
and it is often interesting to use them together. Finally the
database can be used as a cache for attributes which are
frequently used or expensive to obtain. A partial
equipment class and equipment type class hierarchy is
presented in Figure 2.

Offset corresponds to the offset in the attribute list and
dmProperty is the Data Module property.

This definition can be used to produce a configurable,
generic status display. Objects of class EquipAttrType can

be added to the equipment type, describing where the
equipment attribute has to be taken from. This approach
has been implemented in our database. The method
html_td_set() returns an HTML table cell so that status
display in the form of a table can be generated.

3.4 Future work

The generic status display, which has been presented in
the previous chapter, can be extended to setting equipment
attributes to change current, position etc. There are no
technical difficulties, but the problem of write permissions
has to be carefully evaluated. The current permission
schema is based on Unix user/group protection, which
cannot be adopted. The HTML password schema currently
used in our WWW interface has probably to be augmented
with checking of the IP address of the request originator to
make sure that the person setting attributes is actually on
the CERN site.

Another typical operation for beam equipment is making
a beam scan. This is a case where use of Java seems
interesting given all the display facilities already available.

ExpEqGroup

ExpEquip

name

getAttrByName

Attr

AttrInt

ExpEquipType

EquipCompType

EquipAttrType

type
units
 .

DmAttrType DbAttrType

offset

html_td_str

dmProperty

DmSetAttrType

dmProperty

AttrDouble

html_td_str

html_td_str

1

*
*

*

**

1

offset

Figure 2

Scans could be stored in the database and compared with
other scans.

As mentioned briefly before, the database could be used
to cache equipment access. Performance determines
whether it is interesting or not, so that detailed
investigation of the response time and scalability are
necessary.

To eradicate NODAL from our control system we will
have to rewrite the access system, the surveillance
programs and the distribution of the target data to
experiments. In all cases the use of the new OO database
seems to be promising.

4 Benefits from using object-oriented DBMS system

Programs written in an OO language such as C++ or
Java often have to deal with persistent objects i.e. objects
which remain the same beyond the lifetime of the program.
In the accelerator area these objects can correspond to an
abstraction of a physical component of the system such as
a beam line or a beam device. Without an OO database
these objects have to be explicitly created when the
program starts or when it needs to use the object. For
instance to find all collimators of the “H2” beam line we
write:
d_OQL_Query q_eq(“select e from b in
 TheBeamlineSegm, e in b->devices where
 b->name=$1 and e->type->name like $2)’)
q_eq << “ H2” << “Coll”;
d_eql_execute(q_eq, eq_list);

This syntax complies with the ODMG C++ binding
standard and is portable between different ODMG-
compliant systems. The query statement in quotes is
written in OQL query language, which is part of ODMG
standard as well. All this leads to programs which are
shorter, and more comprehensive than programs which use
other types of permanent storage for objects. Another
advantage is that such storage is flexible. When the class
evolves, the program does not need to be changed in most
cases. On the database level, any class of the schema can
be easily modified without affecting objects of this class
already stored in the database because new attributes will

be initialised with default values for existing objects. In
consequence software can be built in an incremental
manner and this is exactly what we need to move from the
old to the new control system.

Other benefits are the obvious benefits from using a
commercial database system such as CASE tools for
development, data security and optimisation of data access.

5 Conclusions

The new Object Oriented database has been a successful
approach to the modernisation of the Experimental Areas
software. The implementation of the BI database has
allowed us to upgrade an important part of the NODAL-
based system and introduce numerous improvements.
More important, this approach is a good starting position to
upgrade the whole system step-by-step. The use of an
object-oriented DBMS and of the World-Wide-Web puts
us in an excellent position to successively introduce object-
oriented technology and Web tools. It is an innovative
approach and could become a pilot project for other areas
of controls in our group.

Acknowledgements

I would like to thank Dafydd Thomas for his help in
importing the data to the database and understanding the
equipment addressing. John Fullerton helped me to
understand the old database and has provided most of the
requirements.

References

[1] The New Controls Infrastructure for the SPS, M.J.
Clayton and P. Charrue, Proceedings of the 1995
ICALEPCS conference, Chicago, 1995.
[2] PASS project at SSCL, PASS Note 93-1, also in
IADBG Newsletter no. 9, http://www.cern.ch/IADBG
/Welcome.html
[3] The Equipment Access Software for a Distributed
UNIX-based Accelerator Control System, P. Charrue et al.,
ICALEPCS, Berlin, 1993

