
Java Application for Creating a Shared Object Cache

I. Mejuev I. Abe
High Energy Accelerator Research Organization (KEK)

1-1 OHO, Tsukuba, Ibaraki 305, Japan

Abstract

The Java language is used to create thin GUI clients
connected to a server implemented as a Java application.
The server contains an object cache, which is updated by
calls to an underlying system layer. Using object-
connection technology, we establish connections between
objects from the server cache and GUI clients’ objects. The
states of the connected objects are synchronized so that all
changes in the objects’ state are transferred from client to
the server, and vise versa. Since only changes are
transferred, the control network traffic is reduced and the
performance increased. Software development is also
simplified, since both the client and server don’t have to
take care of the objects’ states synchronization. The sockets
or distributed Java object systems, such as RMI or HORB,
can be used to transfer the states. Since the system is
implemented completely on Java, it can be made a
multiplatform, and control clients can run on any Java-
enabled browsers with minimum system requirements.

1 Introduction

The main advantages of applying Java for accelerator
control are the use of a Java distributed software model and
connectivity provided by this language. The benefits of
using browsers as client software are also well known.
Besides, currently, the majority of software support Java,
and today we have an excellent choice of authoring and
publishing software.

However, severe timing limitations and the nature of
control programs pose additional requirements on the
software and class libraries used for development. In
control software it is often necessary to deal with a data
stream, rather than with a simple request-reply
communication model. The performance of applications
based on device polling is often not sufficient if the number
of devices is growing. This is especially true for Java
applets, which are supposed to run on browsers with
minimum system requirements. The solution to this
problem is to use notification or “push” technology, where
clients are informed by the server about any changes of
relevant data.

In this paper we describe Java class libraries developed to
provide notifications for clients’ applets with extended
capabilities, such as the creation of named data channels as
well as subscription and synchronization of objects’ states
across a network.Further, we describe the design of a
“Shared Object Cache” application based on those class

libraries. This application is used as a distributor of data
coming from devices to clients’ applets, and also for
providing the possibility of bi-directional data exchange.
The development of Java class libraries and applications is
in line with our efforts to apply a variety of Internet and
Intranet technologies for accelerator control [1], [2].

2 Data channel classes

A data channel class library provides basic functions,
which are used by the other Java classes and applications
described in this paper. The main idea of using channels is
represented in the Figure 1. A Java application called a
“channel server” is run on HOST 2, so that applets or
applications running on other computers can create, delete,
subscribe, unsubscribe and update channels on HOST 1.

Figure 1

If the application or applet from HOST 1 updates a
channel owned by HOST 2 and, that channel has been
subscribed by HOST 3 and HOST 4, the applets running on
those hosts receive a notification. A channel update means
the submission of a primitive data type to a channel,
followed by a value name, represented by an instance of the
String class in Java.

The ChannelManager class provides the functionality
described above; it uses an interface named
ChannelUpdateListener to notify the user about channels’
updates and other events. To indicate errors, a
ChannelException instance is thrown.

2.1 ChannelManager class

 HOST 2HOST 2
Java ApplicationJava Application

 HOST 1HOST 1
Java ApplicationJava Application
 or Applet or Applet

 HOST 3HOST 3
Java AppletJava Applet

 HOST 4HOST 4
Java AppletJava Applet

serverserver
 device device
managermanager

clientclient clientclient

ChannelManager class has two constructors. One creates
a channel server with the possibility to own channels as
well as to send requests to other hosts. Another constructor
creates only a client, which can use channels served by
another host. Since Java applets loaded from a remote host
cannot listen for TCP connections, they can use only the
second type of constructor. Below we describe the public
methods of ChannelManager class in more detail. A
destination (where) is represented in the form of a string,
which contains the TCP port and host name.
• addListener(ChannelUpdateListener listener)

Registers an object which has implemented the
ChannelUpdateListener interface; through the methods
of this interface the user receives notifications about the
updates of channels' and other events.

• pingHost(String where)
Verifies that there is a ChannelManager running at a
specified location, and that it can accept connections.

• createChannel(String channel, String where)
Creates a channel at a specified location.

• closeChannel(String channel, String where)
Closes a channel at a specified location; if the channel
doesn't exist, a ChannelException is thrown.

• subscribe(String channel, String where)
Subscribes a channel at a specified location; if the
channel doesn't exist, a ChannelException is thrown.

• unsubscribe(String channel, String where)
Unsubscribes a channel at a specified location; if the
channel doesn’t exist, or it hasn’t been subscribed,
nothing happens.

• updateChannel(String channel, String where, String
valueID, Object value)

Updates a channel at a specified location. The string
valueID is used as a value name. If the channel exists, all
subscribers receive a channelUpdated message.
The value can be an instance of the following Java classes:
String, Integer, Long, Float, Double, Boolean or a Vector,
comprising these types. It is possible to mix different types
in a Vector. An attempt to pass an illegal data type to this
function generates a ChannelException.

2.2 Channel update listener interface

An applet or application using ChannelManager imple-
ments functions of this interface to receive the updates of
channels and other kinds of notifications. Throwing an
exception in these interface methods generates an error
reply; it can be used to create some kind of security.
Abstract methods of the Channel Update Listener interface
are described below.

• channelUpdated(String channel, String where, String
valueID, Object value, String byWhom)
Called by ChannelManager when a remote or local
channel is updated, and if that channel has been
previously subscribed. It is possible to prevent updating
of a local channel by throwing an exception.

• channelClosed(String channel, String where, String
byWhom)
Called when a previously subscribed channel is about
to be closed. It is possible to prevent the closing of a
local channel by throwing an exception.

• channelSubscribed(String channel, String byWhom)
Called when a remote host or a local listener subscribes
a local channel. Throwing an exception can prevent a
subscription.

• channelCreated(String channel, String byWhom)
Called then a local channel is created by a remote host
 or a local listener. Can be prevented by throwing an
exception.

• channelUnsubscribed(String channel, String byWhom)
Called when a local channel is unsubscribed by a
remote host or a local listener.

2.3 Channel server application

Clients’ applets use connections to the Channel Server
application in order to transfer commands and to exchange
data. Additional functionality, which is provided by this
application, includes a graphical user interface, logging,
and the possibility to inform applets about what channels
are currently available on a server.

Figure 2

2.4 Channel client applet

To simplify the diagnostics and testing of software we
also developed a Channel Client Applet, which provides
the possibility to manually execute channel commands
using a convenient graphical interface.

3 Object connection classes

Data channels can be used for a wide range of control
and other applications; however it is often necessary to
synchronize the states of objects distributed across a
network. For these purpose we developed classes
implementing such synchronization. These classes use a
channel library for data transfer. The following public
classes have been developed: ObjectConnectionManager
and CMObject.

The source code for a client using an object connection is
very simple:

Figure 3

manager = new ObjectConnectionManager();
object = new CMObject(“name”, manager);
object.connect(“port@host”);

This code creates a connection between local object and
server object on “host”.
If either server or client modifies the local object executing
for instance:
object.update(new Float(1.1));

the change in object’s state is transferred across network
and method updated() is called for a remote object.

4 Object cache application design

Object Cache Application belongs to a middle layer of
the control software. It provides device managers and
console
or remote clients with the possibility to share a common
object database. Since sockets (TCP) are used for data
transfer, the application performance is better if compared
with SQL databases or distributed object systems.

Applets or applications, providing a graphical interface
for the users, communicate to a shared object cache using
Object Connection classes, which are described above. It
Significantly simplifies the development of graphical
Interface software, and also reduces the upgrade and

maintenance cost.
Data providers, such as various device managers, while

communicating with a server use a data channel interface,
which is more suitable for handling data streams. Data
coming from the devices are cached in the server memory,
thus significantly increasing the clients’ applets perfor-
mance.

The design layout of the Object Cache application is re-
presented in Figure 4.

Figure 4

References

 [1] The Use of Virtual Reality For a Multimedia
Informational System Development; Igor Mejuev and
Isamu Abe; International Workshop on Controls for
Small- and Medium-Scale Accelerators, 1996, KEK,
Tsukuba, Japan.

 [2] Applications of Internet and Intranet Technologies
for Distributed Control; I. Mejuev, I. Abe;
Proceedings of the 22nd Linear Accelerator Meeting
in Japan; September 9-11, 1997, Sendai, Japan.

Object CashObject Cash
ApplicationApplication

Data ProviderData Provider

Java AppletJava AppletJava AppletJava Applet

Data ChannelsData Channels

Object ConnectionsObject Connections

Data ProviderData Provider

