
Event Handling in TRIUMF’s Central Control System

B.Davison, S.G. Kadantsev, E. Klassen, K.S. Lee, M.M. Mouat, J.E. Richards, T.M Tateyama, P.W.
Wilmshurst, P.J. Yogendran

Tri-University Meson Facility (TRIUMF)
4004 Wesbrook Mall, Vancouver BC V6T 2A3, Canada

Abstract

In TRIUMF’s Central Control System (CCS), alarm
handling and other types of events are dealt with in a
software “scan” package. Many changes that must be
monitored are not considered as alarms because there is no
action associated with the various values of the control
variable and thus the software package was named to
reflect the action of scanning the system for defined state
changes. This scan package can issue messages to different
logs and take actions as determined by the user. The initial
requirements, design, implementation, and user interface
are described.

1 Introduction

During the upgrade of TRIUMF’s central control
system, it became apparent that there is a significant
amount of process monitoring and alarm handling that
could be controlled and operated on by a single software
package. Many of the items that are monitored just report
state changes or significant magnitude changes to the
operators. Some items can cause beam interlocks and
others change channel settings or status. Prior to the
upgrade from the Nova computers, most of the scan tasks
were controlled by two programs called “console scan” and
“mchk”. There was also a “sparking scan” program and
several smaller tasks to monitor various things. It was
decided to amalgamate all of these “scanning” tasks into
one VMS software package which was named the “scan
Utility”. This package scans or monitors predetermined
channels and takes one or more of many possible actions
from producing a message to tripping off the beam.

2 Requirements

A significant requirement of the new system was the
concept of a scan “element” which could consist of one or
more channels. This provides the ability to compare one
channel to another or to logically combine the comparisons
of many different channels with different test conditions.
This was a major philosophical change in that the operators
were used to disabling a scan of a single channel whereas
now they would disable a scan element which may be a
combination of a number of channels. Another re-
quirement was an interface that provided an easy, coherent
way for operators to defeat any scanned element and to
monitor at any time which elements (and which channels
these affect) are currently off-scan. A method to specify
the contents of elements, the frequency of scanning as well
as the actions to take when an element condition is met
was also required. As the central control system is

somewhat dynamic, with new channels being added and
others being changed or removed, it was important to
specify the scans in a way that did not require code
changes when elements were modified. Interprocess
communication was needed so that other programs in the
control system could communicate with the scans to
temporarily disable some elements. For example, when
operators are adjusting channels from a console, they do
not want to see messages to this effect.

3 System design

The domain of all scan elements was divided into
individual scans comprised of typically related channels
monitored at the same frequency. In order to easily change
the channels being monitored, it was decided to specify
each scan in a separate ASCII file using a scan ‘meta’
language. For example, the following is a description of a
scan:

FREQUENCY: 2.0
NUMBER OF ELEMENTS: 3
//
// TNF warn bits
//
ELEMENT 1: ENABLED,ACTIONS: 1
TG,50,REG,RAW != PREVIOUS
DO MESSAGE 7750
//
// TNF temp check
//
ELEMENT 2: ENABLED,ACTIONS: 1
TG,54,MUX,SCALED > 200.0
DO MESSAGE 7850
//
// Machine protect on tank spill
//
ELEMENT 3: ENABLED,ACTIONS: 2
RF,360,MUX,RAW > B1,332,MUX,RAW
DO INSERT FARADAY CUP BIT=31
DO LOG opslog+mainlog “MACHINE TRIP; 2C SPILL”

The number of elements listed in the file and the
frequency (in executions per second) is listed at the top.
This is followed by each element description consisting of
identifier (a number, eg. ELEMENT 3), current status (eg.
ENABLED), number of functions that may be performed
(eg. ACTIONS: 2), channel conditions (eg. RF,360,MUX-
,RAW > B1,332,MUX,RAW) and the explicit action list
(eg. DO INSERT FARADAY CUP BIT = 31 and DO
LOG opslog+mainlog “MACHINE TRIP, 2C SPILL). In
the TRIUMF central control system, channels are specified

by system and thumbwheel. For example, RF,360,MUX
indicates the beam line 2 tank spill wall thermocouple.
These files are read and compiled by the scan utility once
when a scan is started. This permits both easy changes to
scan lists coupled with fast operation from the compiled
version stored in memory when a scan is running. Each
scan is a separate process in the production environment.
One scan can be stopped, modified and restarted without
affecting any other scan in the system. However, for
system management reasons as well as to facilitate
interprocess communication, it was decided that each scan
executable would run as a subprocess of a “ scan control”
program. The user interface and the programs that cause
automatic disables (when operators are changing things via
the console) communicates with a single process (scan
control) which can then communicate to the individual
scans as needed. Information about everything that is
disabled is stored in a single place. Figure 1 illustrates the
various components of the scan utility.

Subprocesses of Scan Control

XSCAN
User Interface

Other Programs
in CCS

Scan Control

Single Scan
RF Single Scan

I1
Single Scan

B1

Single Scan
etc.

Scan
Handler

Figure 1

The scan handler process shown in figure 1 is used to
translate requests that come from other CCS programs into
the format that the scan control program understands.
XSCAN is an X windows application that is the primary
user interface.

4 Implementation

Our current computing environment consists of two
clusters, each of four nodes. Both clusters are mixed
containing one Alpha/VMS machine and three VAX/VMS
machines. The two clusters allow us to use one cluster as a
production cluster to run the cyclotron and the other as a
development cluster to test new software.

4.1 DEC messageQ

One of the first implementation decisions was to choose
DECmessageQ (DMQ) as the mechanism for interprocess
communication. DMQ is also used in the control system to
transfer and organize all of the messages produced by the
control system. DMQ is message oriented middleware
manufactured by DEC and allows programs on any of our
8 nodes (arranged in two clusters) to seamlessly
communicate. DMQ can be set up with several
independent message queueing buses. Currently we have
two buses which allows us to run DMQ linked applications
in a test mode on the development cluster without the
message traffic from the development bus interfering with
the message traffic on the production bus.

4..2 C++

In order to use memory efficiently and save on image
activation times, much of our commonly used code, such
as device access, is in installed shareable images. We
continued this with the DMQ calls and code. The scan
utility was implemented using C++ but C++ without all of
its objected oriented features. We found that using VMS
shareable images precluded using all of the features of
C++.

4.3 X/Motif

The user interface was implemented using X Windows-
/Motif, which is the standard for the TRIUMF CCS. It
provides a reliable, common look as well as enough
flexibility to provide the operator with a visible indication
of what is defeated and provide a way to enable and
disable scan elements. The user interface is described in
section 5 below.

5 User interface

The user interface is an X/Motif application which runs
detached. The main interface window lists the scans that
are active in a scrolling window on the left side and the
scans that are inactive in a scrolling window on the right
hand side. An operator can activate a whole scan by
selecting a scan from the right hand window and then
pressing an activate button. There are a variety of buttons
below the scrolling windows that allow operators to view
the status of each scan and determine which elements are
active in a selected scan. There is a command entry
window at the bottom that allows operators to enter
commands for enabling and disabling various scan
elements. There is also one special display activated by the
Faraday Cup Push Button which provides a display for all
of the elements (spread between many scans) which cause
a machine trip (by inserting the faraday cup). There is no
limit on the number of user interfaces that can run at a
given time. When a command is entered or a request for
off-scan information is received, the user interface sends a
message via DMQ to scan control (which may be running
on a different computer) and it performs the required
action or replies with the requested information.

6 Results and conclusions

The scan utility was commissioned in December of 1996
and has been running since. All of the individual scans
(single scans) along with the scan control and scan handler
processes run on one computer. The user interface runs on
any CCS computer desired by the user. The computer
running the scans uses approximately 40% of its cpu time
to scan 3161 elements. Many of the scans run once every 6
seconds, several of the scans (ones that cause interlocks)
run 5 times per second and then some individual scans run
at a variety of different frequencies.

One of the strengths of the system is the speed with
which new scans can be described and implemented.
Sometimes, a particular experiment or operation will
require something to be monitored at a specified frequency
for a short time period of a day or a week. We are able to
quickly describe the scan using the scan meta language,
send a message to the scan control process to spawn
another subprocess to run this scan without changing or
interfering with any of the other scans. One of the
limitations of this system is the speed with which DMQ
can deliver messages from one program to another. In a

test at TRIUMF, it was found that the DMQ can handle
about 1000 messages per second. However this includes all
of the message traffic on the system. We have found that
under normal operating conditions, we have no problems
with this limitation. However, during an unusual event,
typically a power outage, we find that nearly every scanned
item as well as many other programs all report problems to
the operators. This causes a large flurry of message traffic
and depending on how fast messages pending for programs
are emptied from the DMQ queues, it is possible for some
of the messages to the operators to be lost.

The scan utility has been running for nearly a year with
very little down time and generally good acceptance by the
operators. It exceeds the older Nova version of the
software both in the complexity of the scans that can be
described and in the ease with which scans can be added
and changed.

References

[1] Pam Browns documentation on the Nova version of
this software (mchk and console scan)

[2] DEC DECmessageQ product documentation

