
Handling CAMAC Interrupts in Alpha OpenVMS/PCI

K.S. Lee, S.G. Kadantsev, E. Klassen, M.M. Mouat, P.W. Wilmshurst
Tri-University Meson Facility (TRIUMF)

4004 Wesbrook Mall, Vancouver BC V6T 2A3, Canada

Abstract

Software for Alpha/OpenVMS systems has been
developed to support CAMAC interrupts (LAMs) via PCI
bus. A number of devices in TRIUMF's Central Control
System generate interrupts that are delivered via CAMAC
systems. These interrupts arrive using previously existing
CAMAC executive crates and system crate interfaces.
Until this development, these interrupts were only being
serviced by VAX/OpenVMS computers using Qbus but the
tendency to replace VAXes by Alphas has required that this
LAM handling software be developed. The initial
requirements, hardware and software configuration, driver
structure, and performance are described.

1 Introduction

TRIUMF's Central Control System consists of a mixture
of VAXes and Alphas running OpenVMS. These
computers are organized into two mixed OpenVMS
clusters, a production and a development cluster. Access to
cyclotron devices occurs through a CAMAC executive
crate architecture. Each executive crate supports up to
seven serial and/or parallel CAMAC branches and allows
multiple CPUs access via hardware arbitration. TRIUMF
í s controls group supports 5 executive crates. Each node
in each cluster is capable of addressing two or more of
these executive crates. The CAMAC operations in both
types of CPU are provided by a set of user-written system
service routines in the form of an installed, privileged
shareable image. This method was chosen over using a
formal CAMAC device driver for performance reasons, the
reduced overhead involved in servicing the CAMAC
operations.

A variety of devices in TRIUMF's Central Control
System such as the main operator console, the remote
console panels and protect monitors, generate interrupts
(LAMs) that are delivered via the CAMAC systems. The
CAMAC interrupts on the VAX/OpenVMS computers
arrived via the Qbus are handled using the VMS connect-
to-interrupt driver (CONINTERR.EXE). When the
interrupt occurs, the CONINTERR will cause an
asynchronous trap (AST) procedure to execute in process
context. A nonprivileged process called LAM_HANDLER
in the VAX gets an IO channel for the CAMAC device
GEC0 and issues a queued IO system call ($QIO) with the
IO$_CONINTREAD function code specifying an AST
procedure to execute and an event flag to be set when the
interrupt is generated. There is a tendency is to replace the
existing VAXes with Alpha machines due to the better
price/performance of the Alphas. Unfortunately the
connect-to-interrupt driver that is available under

VAX/OpenVMS is not available under Alpha/OpenVMS.
This meant that migrating LAM related applications from
the VAXes to the Alphas was not immediately possible..
As a result, a formal CAMAC device driver was developed
for handling the interrupts delivered via the CAMAC
systems.

2 Hardware configuration

Two Alphas, an AlphaServer 2000 5/250 and an
AlphaStation 600 5/266, each with a PCI local bus, are
connected to the CAMAC system via the Logical
Company BCI-2100 Q-bus adapter[1]. A pair of TRIUMF
designed executive crate interfaces (0782/0783 modules)
form the connection between the Q-bus and the GEC
executive crate (figure 1). This architecture allows multiple
Alphas to access multiple executive crates and is found to
be quite flexible.

The PCI Q-bus adapter consists of a BCI-2100 PCI
controller, a CAQ-2101 Q-bus module, and a CAB-1104-8
interconnect cable. The PCI Q-bus adapter enables the
computer to read and write to the Q-bus address space and
to control Q-bus interrupt requests and DMA transfers.
Currently, CAMAC interrupts are only generated in one
executive crate (GEC0).

Q-Bus
Expansion Chassis

CAMAC
Executive Crate

DEC
Alpha

TRIUMF 0783

TRIUMF 0782

Branch Coupler

CAMAC
Interrupt

BCI-2100

Figure 1. Hardware Setup for handling CAMAC Interrupt

3 Software configuration

A formal CAMAC device driver, written in C, was
developed with the sole purpose of handling the CAMAC
interrupts. The benefit of using C is that it is easier to write
and allows a certain level of portability. Also, for RISC
machines, a good optimizing C compiler generates
machine code usually more efficient than codes using the
MACRO-64 language. The driver does not support any
other CAMAC operation such as read and write operations.

Those are supported by the existing user-written system
service routines in the form of an installed, privileged
shareable image.

The CAMAC driver offers a SETMODE function which
requests an attention AST be delivered to an AST routine
in process context. This driver code also contains an
interrupt service routine which acknowledges a CAMAC
interrupt has happened and delivers an attention AST.

The CAMAC device driver is loaded into system virtual
address space with its associated data structure in
nonpaged pool using the system management utility
(SYSMAN) IO CONNECT command:

$ SYSMAN

$SYSMAN>IO CONNECT CMC0 /driver = cmc_driver
/vector = 20 /node = 64/ adapter = 2 /csr = 0

A nonprivileged process called LAM_HANDLER gets a
IO channel for the CAMAC device CMA0 and issues a
$QIO call with the IO$_SETMODE function code
specifying an attention AST procedure to execute after the
interrupt service routine has completed. The AST routine
performs the necessary CAMAC operation to fully service
the interrupt and sets an event flag to trigger the re-arming
of the AST notification with another $QIO call (figure 2).

CAMAC Interrupt

AST Delivered

IO_INTERRUPT

Open VMS
AXP Executive

CAMAC
Device Driver

LAM_HANDLING
Process

ISR
 w Write QPR
 w Read QVR
 w Fire AST

AST Routine
 w Clear Branch Demand
 w Set Event Flag to re-arm
 SETMODE Request

Figure 2. Control Flow for Handling CAMAC Interrupts

4 Driver structure

A device driver has to interact with the operating system
to process the specified I/O request[2]. In this case, the
CAMAC device driver has to process a SETMODE I/O
request. The driver consists of a set of routines and data
structures in nonpaged pool. The following is a brief
description of the CAMAC driver routines.

4.1 Initialization routines

A set of initialization routines are executed when the
CAMAC driver is first loaded. This includes the driver
table initialization routine, the structure initialization

routine, the structure reinitialization routine, the
csr_mapping routine and the unit initialization routine.

The driver table initialization routine initializes
the Driver Prologue Table (DPT), the Driver Dispatch
Table (DDT) and the Function Decision Table (FDT)
structures.

The structure initialization routine initializes the device
Interrupt Priority Level (IPL) to 21 and the fork lock index
to 8. It also specifies the CAMAC device characteristics.

The structure reinitialization routine sets up the Interrupt
Transfer Vector Block (VEC) of the Channel Request
Block (CRB) to point to the interrupt service routine. It
initializes the pointers from the Device Data Block (DDB)
to the Driver Dispatch Table (DDT) and the Unit Control
Block (UCB).

The csr_mapping routine maps the PCI configuration
space, the PCI memory space and I/O space into the
Alpha's virtual address space by calling the platform
independent I/O bus mapping routine IOC$MAP_IO.

The unit initialization routine enables interrupt by
writing appropriate values to the Q-bus Control and Status
Register (CSR) and the Q-bus Priority Register (QPR).

4.2 FDT routine

The CAMAC driver has only one FDT routine for
handling the set mode function. It enables attention ASTs
so any process issuing a $QIO call with this function will
have an attention AST delivered when the CAMAC device
interrupts. It calls the COM_STD$SETATTNAST to do the
following: it allocates an expanded access control block
(ACB) from non-paged pool to hold the AST procedure
value, AST argument, channel number and PID. It then
acquires the device lock, raising IPL to 21, to synchronize
access to the attention AST list[3]. After inserting the ACB
into the attention AST list it releases the device lock and
restores the previous IPL.

4.3 Interrupt service routine

This routine is executed when a CAMAC interrupt
happens. It executes at device IPL 21 and calls
COM_STD$DELATTNAST to delivers all queued
attention ASTs. It enables further processing of interrupts
by writing to the Q-bus Priority Register and reading the
Q-bus Vector Register (figure 3). In an environment where
multiple executive crates can deliver interrupts, the content
of Q-bus Vector Register can be examined to find out
which executive crate has generated the interrupt.

5 Performance

Timing results are shown in table 1. The interrupt
handling time is measured as the length of time that the
branch demand is present. The VAX 4100 has the slowest
CAMAC interrupt handling time followed by the VAX
4105. The Alphas are quite a bit faster. The interrupt
handling time continues to decrease as the CPUs get faster.

Handling time gradually increases with an increase in

system load. This could be explained by the
increased

XX1FFFFF 2MB XX0FFFF4 - FF Unused Locations

XX0FFFF0 Q-Bus Test Point Register (TPR)

SIMM Memory XX0FFFEC Q-Bus MAP Register 4 (MR4)

Address Space XX0FFFE8 Q-Bus MAP Register 3 (MR3)

XX0FFFE4 Q-Bus MAP Register 2 (MR2)

XX0FFFE0 Q-Bus MAP Register 1 (MR1)

XX100000 XX0FFFDC Interrupt Control Register (ICR)

XX1000C0 Q-Bus Control Registers 1MB XX0FFFD8 Q-Bus Address Register (QAR)

XX0FFFD4 Q-Bus Maintenance Register (QMR)

XX0FFFD0 Q-Bus Priority Register (QPR)

Q-Bus PIO XX0FFFCC Q-Bus Vector Register (QVR)

Address Space XX0FFFC8 Q-Bus Data Register (QDR)

XX0FFFC4 Write Status Register (WSR)

XX000000 XX0FFFC0 Control/Status Register (CSR)

Figure 3. Q-bus Control Address Space

System Length of branch demand
AlphaStation 600 5/266 150 µsec
AlphaServer 2000 5/250 184 µsec
VAX 4105 233 µsec
VAX 4100 384 µsec

Table 1: Timespan of branch demand present when system
is 1-3% busy

System Business
Percentage

AlphaStation 600
5/266

AlphaServer
2000 5/250

~ 1 % 150 µsec 184 µsec
~ 10 % 166 µsec 202 µsec
~ 20 % 173 µsec 211 µsec
~ 30 % 183 µsec 212 µsec
~ 50 % 184 µsec 227 µsec
~ 80 % 195 µsec 230 µsec

Table 2: Timespan of branch demand present with varying
system load

activities at IPL (interrupt priority level) above zero which
will lengthen the CAMAC interrupt handling time (which
happens at IPL 23) as well as the attention AST delivery
time (which happens at IPL 2).

As expected, there is also a dependency on the system
load. Table 2 shows that t he average CAMAC
interrupt
The nature of the system load also affects the timing. As
we see in table 3, when the Alpha is kept 100% busy doing
only CAMAC cycles, the increase in the CAMAC interrupt
handling time is very small. Whereas there is a greater
increase in time when the computer is doing various
activities such as updating X-terminal displays, accessing
disks, the network and other peripherals.

System Length of branch demand
AlphaStation 600 5/266 153 µsec
AlphaServer 2000 5/250 186 µsec

Table 3: Timespan of branch demand present with system
kept busy at 100% doing CAMAC cycles

The results indicate at least a one-third improvement in
CAMAC interrupt handling time from a VAX 4105 to an
AlphaStation 600.

6 Summary

To facilitate the migration of programs from VAXes to
Alphas, a CAMAC device driver was developed in the
Alphas for handling interrupts delivered via the CAMAC
systems. The hardware and software structure of the device
driver is discussed and the interrupt handling timing results
are presented.

In general, the interrupt handling time in the Alphas is
faster than that in the VAXes. A dependency on the CPU
power and the system load is observed. The current driver
supports CAMAC interrupts generated in a single
executive crate (GEC0). However, it is possible to support
interrupts from multiple executive crates by examining the
Q-bus Vector Register.

References

[1] BCI 2100 Q-bus Adapter for the PCI Local Bus
Owner's Manual (The Logical Company)

[2] Writing OpenVMS Alpha Device Drivers in C by
Sherlock & Szubowics (Digital Press)

[3] OpenVMS AXP Internals and Data Structures by
Goldenberg & Saravanan (Digital Press)

