
CMLOG: A Common Message Logging System

Jie Chen, Walt Akers, Matt Bickley, Danjin Wu and William Watson III
Control Software Group

Thomas Jefferson National Accelerator Facility
Newport News, Virginia 23606, U.S.A

Abstract

TheCommonMessageLogging (CMLOG) system is an
object-oriented and distributed system that not only allows
applications and systems to log data (messages) of any type
into a centralized database but also lets applications view
incoming messages in real-time or retrieve stored data from
the database according to selection rules. It consists of a con-
current Unix server that handles incoming logging or search-
ing messages, a Motif browser that can view incoming mes-
sages in real-time or display stored data in the database, a
client daemon that buffers and sends logging messages to
the server, and libraries that can be used by applications to
send data to or retrieve data from the database via the server.
This paper presents the design and implementation of the
CMLOG system meanwhile it will also address the issue of
integration of CMLOG into existing control systems.

1 Introduction

A typical distributed message reporting and logging system
as illustrated in Figure 1 informs operators with messages
generated either from front end computers running real-time
kernels or from applications on Unix hosts, stores the mes-
sages to a database, and allows retrieval of messages accord-
ing to selection rules. In addition a logging client library
is provided for applications to log messages to the database
through the server. Most message logging systems currently
available are influenced heavily by Unix standard error re-
porting syntax and are literally focused on string messages.
The logging messages in these systems are usually in the
form of either a predefined structure, which makes the whole
system less adaptive to a new control environment, or a text
string, which makes searching through the storage database
less efficient. To store messages, some of these systems use
simple ASCII files making fast searching almost impossible,
or use commercial databases making the whole system less
portable.

In contrast, the CMLOG system presented here uses log-
ging messages in the form of a flexible C++ data object that
holds multiple tagged data values of any type. This type of
logging message allows applications and systems to log or
report data of any type, and makes the CMLOG system eas-
ier to integrate into a control system. Moreover, the CMLOG
system utilizes a well known database structure to allow fast
searching, and employs a three-tier [1] network architecture
to improve the scalability.

Clients

Logging

database

Browsers

Server

Figure 1: A typical distributed logging system.

2 Design and implementation of CMLOG system

2.1 Design and analysis

In comparison to a stand-alone error reporting system that
writes error messages to local terminals or file systems of
a host, a distributed logging system partitions the interac-
tive GUI browsers, logging processes, the server, and persis-
tent data storage among a number of otherwise independent
machines in the network. At run-time, hosts running either
real-time kernels or Unix operating systems (OSs) send log-
ging messages to the server, while the interactive GUIs send
request messages to and receive responses from the server.
Although a distributed logging system offers better scalabil-
ity and a better overview of a system, it is often significantly
more difficult to design, implement, debug, optimize, and
monitor than a stand-alone system. To handle the complexity
of a distributed logging system, many topics (such as con-
currency, connection management, message throttling, and
resource management on real-time systems) have to be ad-
dressed. Object-oriented design and implementation tech-
niques offer a variety of principles, methods, and tools that
may help alleviate much of the complexity related to devel-
oping and configuring a distributed logging system.

2.1.1 Logging messages and network protocol

The type of data used to log messages is crucial to the flex-
ibility and performance of a logging system. A logging
message usually consists of several predefined fields such as
severity, status, user name, host name, and message string.
Using a C or C++ data structure with several predefined
fields as a log message prevents users from adding extra
fields that may be important to different control systems. On
the other hand concatenating all text strings converted from
data of different types into a large text string as a long mes-

sage indeed allows one to log data of arbitrary data types but
severely hampers the operations of insertion and search of
messages to and from the storage database, since only string
comparisons can be performed. In order to let applications
or systems log data of any type without sacrificing the per-
formance, a message has to serve as a dynamic structure that
contains multiple data fields, accessed by tagged values, of
different types and sizes. The CMLOG system thus selects
a C++ data type calledcdevData[2] that was designed to be
a repository for data of different types and sizes as the mes-
sage type. ThecdevDataobject uses either an integer tag or
a character string tag to access internal data. There is a one
to one correspondence between integer tags and string tags
so either may be used to retrieve and insert data. Currently
thecdevDataobject can hold any of type integer, pointer to
a character string, char, short, ushort, uint, long, ulong, float,
double, or timeval structure and arrays of these.

4 bytes4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

CDEV packet map

Client Id

Transaction Id

Cancel Transacion Id

Local Data Id

Remote Data Id

Operation Code

Device count

Device List

Message

Request Data

Request Context

Tag Map

Array
Strings

String

cdevData
binnary
stream

cdevData
binary
stream

cdevData
binary
stream

100

2

-1

"hello"

"talitha"

cdevData CLIP Packet

"value"

"severity"

"status"

"text"

"host"

Figure 2: Illustration ofcdevDataandCLIP packet.

A network protocol is a set of rules that dictate how data
and control information is exchanged between communi-
cation entities. The network protocol of CMLOG defines
how messages of typecdevDataare transferred between
the server and logging clients, between the server and the
browsers, and how the logging clients and browsers find
where the server resides. TheCLIP [3] protocol has been
used to transfercdevDatabetween CDEV applications and
CDEV servers. Using theCLIP protocol provides an effi-
cient network transfer protocol forcdevDataand makes in-
tegration of CMLOG system into the service layer of CDEV
system much easier. Figure 2 illustrates the organization of

thecdevDataobject andCLIP protocol.

2.1.2 Logging clients

Logging clients in a logging system are applications that use
an application program interface (API) to send messages to
the server via established connections. Depending on the
size of a control environment, there could be thousands of
these applications running at the same time. Unfortunately,
not all operating systems support thousands of network con-
nections at the same time for a single network server. The
CMLOG system introduces another layer of software be-
tween logging clients and the server, called a client daemon,
to reduce the number of network connections on the server.
On a given host there is only one client daemon that estab-
lishes network connection between the host and the server
and sends all messages to the server collected from all log-
ging clients on the host.

The logging clients and the client daemon can run on
hosts running real-time kernels in addition to hosts running
different flavors of Unix operating systems. A real-time ker-
nel usually imposes tighter memory constrains, often pro-
vides no memory protection among kernel and user tasks,
and offers different scheduling policies and global address
space for kernel and tasks[4]. The logging client APIs and
the client daemon thus have to be thread safe and consume
little memory. Additionally, the logging client API should
also provide callable routines for the Interrupt Service Rou-
tines (ISRs) which are common in real-time systems.

2.1.3 Browsers

The browser side of the logging system usually consists of a
GUI interface that allows operators to monitor incoming log-
ging messages in real-time and to retrieve messages from the
database. A GUI interface of the CMLOG system lets opera-
tors select what and how to display the data fields of logging
messages, since it has no knowledge about the fields until
run-time. As a general logging system, CMLOG provides a
browser API to enable programmers to develop customized
display applications. Since the number of browsers running
simultaneously is much smaller than the number of running
client applications, browsers have direct connections to the
server.

2.1.4 Storage database

The database used to store message in a logging system has
to be reliable and to allow fast insertion and search.

2.1.5 Server

The performance and reliability of the network server in a
logging system is extremely important. The server receives
all logging messages from all connected hosts, writes those
messages to a database, and it has to handle requests from
browsers to search the database. It is unacceptable if any
network requests from browsers or clients are blocked for a
long time while the server is waiting for disk I/O operations
or is handling other network requests.

It is often a challenge to design and implement a ro-
bust and high performance network server. However the in-
creased availability of advanced OS mechanisms (such as
multi-threading), coupled with growing adoption of C++
and object-oriented methods, provides better understanding
of the basic architectural choices for developing network
servers.

� Connectionless or Connection-oriented protocols:
Connectionless protocols(such as UDP, IP, CLNP)
provide an unreliable, message-oriented service where
each message may be routed independently. There is
no guarantee that a particular message will arrive at
its destination. In contrast, connection-oriented proto-
cols (such as TCP) offer a reliable, sequenced, non-
duplicated data delivery service for applications. A
logging system cannot afford to lose messages sent by
client applications or drop requests from browsers. It is
thus obvious to choose connection-oriented protocols
in the case of CMLOG. In particular the CLIP protocol
is used on top of TCP.

� RPC or Lower-level IPC Mechanism: RPC is an at-
tractive level of abstraction for developing network ap-
plications. They provide developers with a program-
ming paradigm that closely resembles the familiar pro-
cedure calling conventions used in stand-alone applica-
tions. To implement a robust, portable and high perfor-
mance network application such as the CMLOG sys-
tem, however, it may be necessary to access lower-level
IPC mechanisms such as sockets or TLI. Lower-level
IPC mechanisms tend to be more efficient than RPC
since they allow applications to omit some unneces-
sary functionalities and enable finer-grain control over
communication behavior.

� Iterative vs. Concurrent Servers: An iterative server
handles each client request in its entirely before ser-
vicing subsequent requests, which could be either
blocked or ignored. In addition, iterative servers may
also prevent clients from making progress while they
are blocked awaiting their turn. Client-side block-
ing tends to complicate retransmission timeout calcula-
tions. This, in turn, results in excessive network traffic
and may produce duplicate requests being received by
a server. A concurrent server, on the other hand, han-
dles multiple requests from clients simultaneously. It
is well-suited for I/O bound and/or long-duration ser-
vices that require a variable amount of time to execute.
In a highly concurrent system such as CMLOG system,
the server has to handle logging or searching messages
from clients or browsers simultaneously. The iterative
server scheme is therefore not suitable.

In summary, the CMLOG system is a connection ori-
ented and low-level IPC based distributed logging system
with a concurrent network server that offers fast logging
and searching capabilities. Client applications log messages
through a client daemon to the server. Browsers are directly
connected to the server to search the database. Finally the
architectural overview of the CMLOG system is presented

in Figure 3.

Client
Daemon

Client
Daemon

Client
Daemon

Browser

Browser

Logging
Clients

Database

Server

Figure 3: Architectural overview of the CMLOG system.

2.2 Implementation

Developing a distributed software system is difficult since it
requires detailed knowledge of many concepts such as (1)
network addressing and remote server identification, (2) cre-
ation, synchronization, and communication mechanisms for
processes or threads, (3) presentation layer conversion tech-
niques, and (4) task scheduling in real-time systems. Even
though most operating systems offer various APIs for net-
work IPC, using those APIs directly to implement the CM-
LOG system would lead to the following problems:

� Lack of Type-security: In most Unix and real-time sys-
tems a system call API identifies particular instances of
I/O devices (such as files and sockets) using a common
namespace consisting of unsigned integer I/O descrip-
tors which are “weakly-typed” in the sense that disk
file descriptors are not syntactically different from net-
work connection descriptors. Therefore, it is easy to
use the wrong descriptors in the wrong circumstances
by accident.

� Non-Portability: It is difficult to write portable code
that use OS IPC mechanisms since they are different
among different operating systems, especially for real-
time systems. This increases the complexity of devel-
oping and maintaining application source code.

Due to the efficiency and availability of C++, it makes
sense to encapsulate the existing IPC and synchronization
mechanisms for different operating systems within C++
classes and inheritance hierarchies. More explicitly, C++
classes handling task (thread) management and synchroniza-
tion mechanisms for Unix and VxWorks have been devel-
oped, some small portion of the C++ classes from ACE [5]
have also been tested on various platforms, including Vx-
Works. Developing the CMLOG system based upon these
C++ classes helps improve software quality and portability.

2.2.1 Logging client APIs and client daemon

The CMLOG client APIs are callable routines for applica-
tions. At run-time a client uses UDP messages to find out
whether a client daemon is running on that host. If a client
daemon is indeed present, the logging client uses a pipe to
establish a communication channel. On Unix machines if
there is no client daemon, a client daemon will be spawned.
Each client is assigned a unique ID of type unsigned integer
and has a logging context which contains fields (user name,
host, etc.) that do not change. The client daemon uses a
UDP broadcast to find a server on the subnet. The connected
daemon then buffers all messages from clients on the same
host and sends messages to the server. A non-connected dae-
mon will periodically try to connect to the server while it
writes all messages to the local console. Figure 4 presents
an overview of clients and the client daemon of the CMLOG
system.

���
���
���

���
���
���Client

Daemon

Logging
Clients

Pipe

Pipe

Buffer

Figure 4: The logging clients and the client daemon.

All client APIs are handled by a single C++ class called
cmlogClientwhich has three basic functions: (1) connect,
(2) postData, and (3) disconnect. The following are sample
C++ code for Unix and VxWorks systems using CMLOG.

#include<stdio.h>
#include<cmlogClient.h>
extern “C” int client test (char* name);
#ifndef vxworks
int main (int argc, char** argv)
#else
int client test (char* name)
#endif
f

#ifndef vxworks
cmlogClient* client = new cmlogClient (argv[1]);

#else
cmlogClient* client = cmlogClient::logClient (name);

#endif
if (client!connect () == CMLOGSUCCESS)f

cdevData data;
data.insert (“value”, 100);
data.insert (“text”, “test 1 2 3”);
data.insert (“severity”, -1);
client!postData (data);
client!disconnect ();

g

g

Several routines similar to conventional Unixprintf for-
mat with related C callable routines are also available. In
addition, callable routines for ISRs are also provided.

2.2.2 Browser APIs and Motif browser

The CMLOG system provides a browser API that can be
used to develop sophisticated applications that monitor log-
ging messages in real-time and retrieve messages from the
server. Applications using the API look for the server by
UDP broadcast. Once the server is found, a TCP direct con-
nection is established. The API allows applications to regis-
ter callbacks with each request so that the applications do not
have to wait for the requests to come back while processing
other events (such as X events).

Additionally, the CMLOG system provides a sample im-
plementation, called cmlog, using Motif and the browser
API. The cmlog has the capability to let operators select
what fields to display. It also lets operators adjust the dis-
play width for each field at run-time.

2.2.3 Server

The server in the CMLOG system deserves more attention.
It is a concurrent server that handles logging and querying
messages from clients and browsers while writing and read-
ing data to and from a database. In the domain of network
server, there is more than one way to achieve server concur-
rency.

� Multi-threaded implementation: Multi-threading are
rapidly becoming available on most OS platforms
[6]. A thread is an independent series of instruc-
tions executed within a single process address space.
This address space may be shared with other exe-
cuting threads. Threads are often characterized as
“lightweight processes” since they maintain minimal
state information, require less overhead to create and
synchronize, and inter-communicate via shared mem-
ory rather than through IPC mechanisms. In a multi-
processor machine a thread can bind to a particular
processor so that parallel processing is possible. Even
on a uni-processor machine a thread blocked on a sys-
tem call will yield its cpu time to other threads, which
results in higher network throughput and better re-
sponse time. However, not all operating systems sup-
port multi-threading mechanisms.

� Multi-process implementation: In a Multi-process net-
work server, each network request is handled by a Unix
process which is either forked on demand or is pre-
spawned into a poll at server creation time. Since
a process is a kernel-scheduled entity, the concur-
rency is directly supported by the OS through round-
robin scheduling. However, Unix processes are much
more expensive to create and interprocess communica-
tions are more complicated than communication mech-
anisms among threads.

� Single-thread implementation: A concurrent server
may also be designed to handle multiple requests si-

multaneously with a single-threaded process. Single
threaded concurrent servers usually are implemented
by explicitly time-slicing their attention to each request
via techniques such as port demultiplexing (e.g. se-
lect or poll) and non-blocking I/O. In comparison with
multi-threaded/multi-process servers, single-threaded
concurrency servers can still be blocked if one request
requires a long duration of service.

Network requests to the server of the CMLOG system are
either to log messages or to query the database. The ser-
vice durations for these requests range from very short for
logging a single message to very long for retrieving a large
number of messages in the database. It is therefore unwise
to implement the server using a single-threaded implemen-
tation.

In order to make the CMLOG system portable, the server
is implemented using either the multi-thread (using Pthread
[7]) or multi-process method depending on the availability
of Pthread on a platform. A set of parameters (such as de-
fault UDP port, number of threads (processes) to create, and
shared memory ID) in a header file allows different sites to
configure the server. In addition, the server reads a con-
figuration file that contains more parameters which can be
fine tuned for different environments without recompiling
the code.

DUP

Client TCP

Browser TCP

Queue

Threads

Processes

D
I
S
P
A
T
C
H
E
R

Figure 5: Run-time architecture of the server.

When the server starts up, it creates several ports to handle
network requests. The first port is a UDP port which is well-
known to clients and browsers. The others are TCP ports
assigned by the operating system for TCP connections from
client daemons and browsers. To find out where the server is
on a subnet, client daemons and browsers send a UDP broad-
cast message to this UDP port. When the server receives the
UDP broadcast message, it sends back information about
what TCP ports the client daemon and browsers can use
to establish TCP connections. Next, the server spawns the
number of threads (processes) specified in the header file.
These threads (processes) initially are asleep. When there is
a network request, the master thread (process) wakes up one
thread (process) to process the request. Once the request is
serviced, the thread (process) goes back to sleep. This is very
similar to the Master-Slave (Boss-Worker) [8] paradigm that
is popular in parallel computation. Figure 5 demonstrates
the run-time architecture of the server.

2.2.4 Database

The database contains multiple Unix files that contain time
stamped logging messages ofcdevDatain binary form. Each
file is indexed by time and is organized in a B+ tree structure.
A database file is closed and a new file is created in a time
cycle specified in the server configuration file.

3 Integration of CMLOG into a control system

The flexibility of cdevDataand easy customization of the
server enables a CMLOG system to be integrated into a con-
trol environment easily. For example, one can keep the ex-
isting client logging API which then calls the client API of
the CMLOG system. On systems such as EPICS [9] which
allow error handlers to be installed to catch error messages,
a simple routine implemented using CMLOG will send all
messages to the server.

4 Concluding remarks

The CMLOG system is a new distributed and general mes-
sage logging system that enables applications or systems to
log data of any type into a centralized database. It con-
sists of a concurrent Unix server implemented in C++ using
multiple threads or processes where applicable to improve
network responsiveness and concurrency, a client daemon
that buffers and sends all logging messages on a host to the
server, a C++ client library that is used by applications to
log messages, and a C++ browser library that supports call-
back mechanisms to let browsers handle other events and
wait for responses from the server at the same time. Further-
more, the CMLOG system offers two CDEV services. One
is cmlogServicewhich is the CDEV service layer for the the
client library. Another iscmlogQServicewhich is the CDEV
service for the browser library. These two services enable
CDEV applications to log to and retrieve messages from the
server in CDEV fashion. For example one can log messages
in a CDEV application in the following way:

f

cdevData data;
data.insert (“severity”, 2);
data.insert (“status”, -1);
data.insert (“text”, “Error happened”);
cdevRequestObject* obj = 0;
obj = cdevRequestObject::attachPtr

(“cmlog”, “set msg”);
if (obj)

obj!send (data, 0);
g

The CMLOG system currently serves as an error report-
ing system for the CDEV package and as an error logging
system in the control system at Jefferson Lab. It has been
tested on Hewlett-Packard machines running HPUX-9 and
HPUX-10, Sun workstations running Solaris 2.5.x and Intel-
based PCs running Linux 2.0.x. The client library and client
daemon have also been tested on mv162, mv167, mv177 and

mvme2604 running VxWorks 5.2(3). The server can han-
dle up to 2000 and 200 logging messages per second from a
Unix host and a mv162 machine respectively. It can send up
to 1000 messages per second to a browser for a single query
request. Finally the source code for CMLOG is available via
anonymous ftp from ftp.cebaf.gov in pub/cdev.

Acknowledgements

Special thanks to Graham Heyes and David Abbott in the
Data Acquisition Group of Jefferson Lab for running and de-
bugging the CMLOG system on CODA [10]. Special thanks
also go to Johannes van Zeijts in the control software group
of Jefferson Lab for his valuable suggestions and code test-
ing.

References

[1] Ban-Ari, M. “Principles of Concurrent and Distributed
Programming”. Englewood Cliffs NJ, Prentice-Hall.
1990.

[2] Jie Chen, Graham Heyes, Walt Akers, Danjin Wu
and William Watson III, “CDEV: An Object-Oriented
Class Library for Developing Device Control Applica-
tions”, Proc. of ICALEPCS’95, p97.

[3] Walt Akers, William Watson III and Jie Chen, “The
CDEV Linear Internet Protocol Definition”. CDEV
Reference Documentation.

[4] Phillip A. Laplante, “Real-time Systems Design and
Analysis, An Engineer’s Handbook”. IEEE Press,
1993.

[5] D. C. Schmidt, “The ADAPTIVE Communication
Environment: Object-oriented Network Programming
Components for Developing Client/Server Applica-
tions”. Proc. of the 11th Annual Sun Users Group Con-
ference, (San Jose, CA), SUG, Dec. 1993.

[6] J. Eykholt, et.al., “Beyond Multiprocessing... Multi-
threading and SunOS Kernel”, in Summer USENIX
conference, (San Antonio, Texas), June 1992

[7] IEEE, Inc., Information Technology - Portable Op-
erating System Interface (POSIX)- Part 1: System
Application Program Interface (API) - Amendment
2: Threads Extension [C Language], IEEE Standard
1003.1c-1995, IEEE, New York, N,Y, Also ISO/IEC
9945-1:1990c.

[8] Steve Kleiman, Devang Shah, and Bart Smaalders,
“Programming with Threads”, Prentice Hall, Upper
Saddle River, NJ, 1996.

[9] Leo R. Dalesio, et. al., “The Experimental Physics and
Industrial Control System Architecture: Past, Present,
and Future”, ICALEPCS’93, Oct. 1993.

[10] William A. Watson III, Jie Chen, Graham Heyes,
Edward Jastrzmbski, David R. Quarrie, “CODA: A
Scalable, Distributed Data Acquisition System”, IEEE
Trans.Nuc.Sci., Vol. 41, p61.

