
Meta Object Facilities and their Role in Distributed Information
Management Systems

N. L. Baker & J-M Le Goff
The Centre for Complex Co-operative Systems Faculty of Computer Studies & Mathematics

University of the West of England Bristol BS16 1QY
Email: Nigel.Baker@csm.uwe.ac.uk

ECP Division, CERN, Geneva, 1211 Switzerland
Email: Jean-Marie.Le.Goff@cern.ch

1 Introduction

The rapid convergence of the communications and infor-
mation systems industries has motivated the movement
towards the decentralisation of computer systems and com-
puter applications. Organisations, people and information are
naturally distributed and as such the global market demands
and users expect distributed computer systems to be
integrated and interoperable. Further it is expected that these
systems be adaptable, available and can evolve to meet new
demands. The fundamental objective of any distributed
application or information system is for the separate
components to co-operate and co-ordinate computation in
order to do useful work and or achieve some overall common
system goal. However as systems integrate and grow so does
complexity and the ease with which information can be found
and managed. Although some progress has been made using
distributed object based technology towards reducing the
complexity of systems interaction and towards making
systems more interoperable, there is still a lot of issues to be
resolved.

This paper opens by discussing what is meant by the term
interoperability, the motivations for building such systems
and the characteristics and issues surrounding self describing
reflective information systems. A brief summary of current
standardisation work follows together with an analysis of
how this might impact on the future design of HEP
production management systems. The paper concludes with a
section on the experiences gained in applying these ideas to a
production management system for an experiment detector.

2 Interoperable systems

A fundamental requirement to make any two distributed
systems interoperate is that their software components be
able to communicate and exchange data. Remote Procedure
Calls and their associated data exchange standards is an
example mechanism which allows software components to
exchange simple data types. In distributed object based
systems object request brokers such as the Object
Management Groups (OMG) CORBA[1] fulfil a similar role
but provide in addition location and access services. However
a stronger aspect of interoperability is that distributed
systems and components to be integrated, should have
common ways of handling and dealing with such system-
wide things as events, security, systems management,
transactions and faults. Software components must be able
to plug into these common distributed services and facilities.

Java Beans [2] and Microsoft’s ActiveX [3] are examples of
efforts to standardise on the way components handle common
events and services particularly with regard to user interface
and desktop objects. The OMG’s CORBAServices [4] is
another example of such a standard but this is directed more
towards providing fundamental common services required of
any distributed application. The CORBAServices specifies
how distributed objects should participate and provide
services such as naming, persistent storage, lifecycle,
transaction, relationship and query. Most major progress in
building interoperable distributed systems has been achieved
through making use of object oriented techniques.
Encapsulation has been used to partition, manage and hide
the complexity of the underlying fundamental services and
inheritance the mechanism used by application developers to
gain access to them.

A further aspect of interoperability concerns ways of
making components and systems self describing. That is we
want our systems to be able to retain knowledge about their
dynamic structure and this knowledge to be available to the
rest of the distributed infrastructure through the way that the
system is plugged together. This is absolutely critical and
necessary for the next generation of distributed systems to
be able to cope with size and complexity explosion.

As an example of a large scale system, consider the
engineering data management and production management
systems required to support the manufacturing of parts for
LHC experiments. A huge quantity of data will accumulate
in the product breakdown and assemble breakdown
structures. As the HEP experiment production system
process evolves so more data and the relationships between
different aspects of the data must be permanently recorded.
HEP groups, projects and systems will require flexible ways
to find, access and share this production data. The actual
information required will depend very much on the viewpoint
and the role of the user in the organisation. The production
system for example must provide support for the "as built "
view of the manufacturing process and production data.
Future HEP user groups may well require a calibration,
maintenance or an experiment systems management
viewpoint. Also, over time, new distributed computing
systems will need to interoperate with the older production
and manufacturing systems perhaps in unforseeable ways.
There is no doubt that as the manufacturing process gets
underway production schemes and part definitions will
change. To cope with this a production management system
must be able to support dynamic self reconfiguration. One
possible way of achieving this is for the system to make

available to itself a self representation for manipulation. A
system which can make modifications to itself by virtue of its
own computation is called a reflective system[5].
Computation done with this part of the system does not
contribute directly towards the goals of the application
domain but to the internal organisation of the system. It also
serves the purpose of both self and external systems being
able to reason about the system. Therefore in order to inter-
operate in an environment of future systems and users and
in order to adapt to reconfigurations and versions of itself
large scale systems must be self describing. Self describing
information is termed meta-information or meta-data.

3 Metadata and metamodels

The concepts of metadata and reflection is not new and use
of these ideas have been made in frame based languages ([6],
[7]). The Actors language [8] describes its own structures
and makes use of reflection. Meta classes, that is a class that
is used to describe another class was introduced in Smalltalk-
80 [9]. CommonLoops and CLOS also provide greater
abstraction power by making use of meta class. Another
historical application of the use of metadata is in database
management systems where a schema provides a
representation of the structure, constraints and use of data
within the database.

Because support mechanisms for metadata have to fairly
recently been largely adhoc attempting to meet specific
application needs, the terminology can be a little confusing.
The following is an aid to clarify some of the terms:-
• Meta - this prefix signifies ” something that describes”.
• Meta Information - information that describes

information
• Meta-meta-information - information that describes

meta-information
In database terminology the term schema is used to mean a

formal description of the structure of some collection of data.
Metadata then refers to the reified representation of this
descriptive data. However in object oriented systems meta-
information is usually represented using meta-objects. In
general meta-information requires the descriptive power of
class, attributes, containment and relationships The object
types used must define a language which has the expressive
power to describe a model such as object oriented analysis
and design diagrams or an SQL database schema. The
language (set of object types) required to adequately model
the information in the application domain of interest will in
most cases be different. What is required for universal
interoperability is a universal type language capable of
describing all meta-information.. The common approach is
to define an abstract language which is capable of defining
another language for specifying a particular metamodal. This
language will be describing information that describes
information, in other words meta-meta-information. In this
manner it is possible to have an arbitrary number of
metamodel layers. The generally accepted conceptual
framework for metamodeling is based on an architecture with
four layers. Table 1 illustrates the four layer Metamodeling
architecture adopted by the OMG and based on the ISO
11179 standard.

LAYER DESCRIPTION
meta-metamodel
MOF layer

architecture infrastructure
defines language for specifying a
metamodel

metamodal
UML layer

an instance of a meta-metamodel
defines language for specifying a
model

model
user object model

an instance of a metamodel
a language to define an information
domain

user objects an instance of a model

Table 1 : The Four Layer Metamodeling Architecture

The meta - metamodeling layer is the layer responsible for
defining a general modelling language for specifying meta
models. Examples of meta-meta objects in this meta-
metamodeling layer are MetaClass, MetaAttribute and
MetaOperation. This top layer is the most abstract and must
have the capability of modelling any metamodel. At the next
layer down a metamodel is an instance of a meta-metamodel.
It is the responsibility of this layer to define a language,
which is itself defined in terms of the meta-metaobjects of the
meta-metamodeling layer above, for specifying models.
Examples of objects at this layer are Class, Attribute,
Operation, Component.

An example metamodel and associated language familiar to
most software engineers is the Unified Modelling Language
(UML) [10] which is used in object oriented analysis and
design. A model at layer two is an instance of a meta model.
The primary responsibility of the model layer is define a
language that describes a particular information domain. So
example objects for the manufacturing domain would be Part,
Measurement, Production Schedule, Composite Part. At the
lowest level user objects are an instance of a model and
describe a specific information and application domain.

4 OMG metamodeling facilities

The purpose of the OMG Meta Object Facility (MOF)[11]
is to provide a set of CORBA interfaces that can be used to
define and manipulate a set of interoperable meta models.
The intention is that the meta metaobjects defined in the
MOF will provide a general modelling language capable of
specifying a diverse range of metamodels although the initial
focus was on specifying metamodals in the Object Oriented
Analysis and Design domain. It has been designed to
support:-
• Generality: it should be capable of describing a range

of metamodels.
• Extendibility: it is a core model and is capable of

extension by inheritance and composition
• Reuse: when developing metadata for a new applica-

 tion it should be possible to reuse metadata from other
similar applications

• Reflection: it should be capable of being able to
represent itself

The usage of the MOF will depend very much on
viewpoint. From a systems designers viewpoint who will be
looking down the meta architecture layers the MOF is used to
define an information model for a particular domain of
interest. The definition is then used to drive subsequent
software design and implementation. Another viewpoint is
that of a systems programmer who is looking up the meta
levels. The concern here is for CORBA clients to obtain
information model descriptions to support reflection and
interoperability.

The MOF is a key component in the CORBA Architecture
as well as the Common Facilities Architecture. The MOF
uses CORBA interfaces for creating, deleting, manipulating
meta objects and for exchanging meta models. A repository
service called the Repository Common Facility[12] is the
architectural component that is used to make this metadata
and metamodels available in a run time environments.

Figure 1 shows the positioning of the Repository Common
Facility within the OMG Architecture. A repository within
the context of distributed object based systems is a
framework for developing, integrating, deploying and
managing independently developed reusable software
components. This framework is usually implemented on one
or more database systems and uses database management
systems, persistent storage and transaction services.
Repositories that currently exist tend to support specific
domains such as Software Development or Business
Information.

One fundamental repository which is already used in the
OMG Architecture is the Interface Repository (IR) which
supports the Object request Broker (ORB). The IR contains
the interface specifications of all the objects that an ORB
recognises. The IR is queryable and updateable at runtime
with all the objects being described using CORBA IDL
(Interface Definition Language). Proposals for the Common
Repository Service has been defined to include the IR and
considerably extend repository facilities to satisfy enterprise

Repository Common Facility

Meta Data
Schema Man

Data
Interchange

Meta Data

Application Objects Object Services

Object Request Broker

Figure 1. Repository Common Facility within OMA

wide needs. An outline architecture[12] for a Common
Repository Facility (CRF) proposed by Unisys to the OMG is
shown in figure 2. The Repository Object Model shown as
the top layer of figure 2 describes, using the MOF,
fundamental repository concepts such as models, classes,
relationships and is used to define the CRF itself as well as
other repository models

In other words this is the repository meta-metamodel. The
layer underneath is the representation of the repository
common facility itself and is a composition of key object
services and common facilities. This layer is often called the

repository meta model. The final set of layers corresponds to
the content models, that is they describe the meta models that
are contained in the repository. Example models are:-
Business models, manufacturing models, workflow models
and tool models.

Repository Object Model

Name Version Tool Reg

Repository Services Model

Systems Man Facility Application Dev Facility

Health Workflow Financial

Technology, Tool & Business Models

Figure 2. Repository Information Model Architecture

Figure 3 shows an example of a repository architecture and
how various types of applications can access repository
object instances. A repository object will be an OMG
compliant object defined in IDL whose type is defined in a
repository meta model or object schema. It will be accessible
by repository services such as the Repository Naming service
and versioned by the Repository Change Management
service. Users must be able to create, manage, extend and
evolve the definition of metamodels (object schema’s) in
order to reflect the requirements of their application or tool.
The repository will manage the lifecycle of all repository

Repository Browser

Desktop Objects

Tools Applications

Repository
Services

Technology
Models

Business
Models

Repository Object Model

Repository
Objects

Repository
Objects

Object Request Broker

Figure 3. Run Time Distributed Object Repository
Architecture

objects and provide a default object factory for defined object
types contained in the repository. Other examples of services
supported include:- query service, security service,
externalisation service, relationship service, event
notification service, transaction service.

5 Workflow management

A workflow management system allows managers to co-
ordinate and schedule organisational activities in order to
optimise the flow of information between system resources.
Workflows are collections of human and machine based
activities (or tasks) that must be co-ordinated in order to
accomplish some business process. Commercial examples of
workflow management systems exist which can facilitate the
definition, management and execution of workflows whose
order of execution is driven by computer representations of
the workflow logic..

CRISTAL (Co-operating Repositories and Information
System for Tracking Assembly Lifecycles)[13] is a workflow
management system that supports production and
manufacturing of parts for LHC experiments. The initial
phase of the CRISTAL project is concerned with the
management of production, testing, assembly and tracking of
over 110,000 lead tungstate mono-crystals and their fast
electronics to be installed in the CMS Electromagnetic
Calorimeter (ECAL) high energy physics experiment. The
production and assembly of these parts estimated to be about
1 million in total, is distributed around a number of sites in
Europe and Asia.

A Product Data Management (PDM) system holds the
descriptions of the Product Breakdown Structure (PBS), the
Assembly Breakdown Structure (ABS) and the Work Break-
down Structure(WBS). The main components of CRI-STAL
is a distributed workflow enactment service and a workflow
application programming interface. The application progra-
mming interface is required to define and modify workflows
(production schemes) and activities (tasks). The initial

EDMS - Engineering Data Management System

PBS
Product Breakdown

Structure
Parts Specification

ABS
Assembly Breakdown

Structure
Hierarchy Specification

WBS
Work Breakdown

Structure
Task Specification

CRISTAL - Production Management Facility

Workflow Instantiation Workflow Enactment

Workflow Repository

Figure 4. The CRISTAL Environment

workflow definitions are derived from the WBS and ABS
parts of the PDM. The workflow enactment service consists
of an execution interface and an execution service provided
by a so called work engine. The engine is the component that
executes the static workflow production descriptions. The
monitoring, managing and other run time services associated
with the executing workflow instances is effected through
the execution interface. The relationship between CRISTAL
and PDM is illustrated in figure 4.

6 Object modelling in CRISTAL

Workflows within CRISTAL are distributed objects and
therefore there is no need for a centralised work flow engine.
Whenever a real physical part or composite part is
referenced within a production or assembly centre its
corresponding workflow instance (workflow engine) object
co-ordinates with the operator through the desktop control
panel as to the next possible activities to be performed on the
part. So in the object model each part definition object is
associated with a workflow definition object. The workflow
definition objects are called workflow schema objects in
workflow management terminology. Workflow activities
(tasks) are objects that describe the activity (human or
machine related) that must be performed on the part. These
definition objects are meta objects since they are objects that
describe.

The workflow meta model of CRISTAL is described using
UML, a skeleton outline of which is shown in figure 5. This

Part Definition Workflow Defín

CompositePDef ElementaryPDef CompositeWfActElementWfAct

PartCompositeMem WfCompositeMem

Figure 5. UML Object Model

model describes relationships, types, inheritance, contain-
ment and other associations between the metaobjects in the
system. However in order to support creation of part and task
definitions and to cope with dynamic change a run time
representation of this logical model must be available for
manipulation. The designers of CRISTAL are making
extensive use of the OMG CORBAservices [14] to create a
run time workflow model which is stored in a repository.
This repository model is an example of one of the Business
& Technology Models in the Repository Information Model
Architecture shown in figure 3.

The CORBA Relationship Service provides standard
interface specifications that describe the behaviour of run
time objects that allow modelling of:-

• Types of Relationship
• Relationship Roles
• Degree of Relationship: the number of roles required

in a relationship of a given type
• Cardinality of Relationship: number of relationships

of a given type that can be associated with a given role
• Attributes
The implementation of the relationship service allows

objects to be related independently of their IDL interfaces
which means that relationships can be modified at run time as
the workflow metamodel changes. To support model changes
requires creation, deletion, move and copy of repository
objects. For example creation of the self- model, relationship
changes and workflow definitions changes all require support
for the creation and destruction of objects. New versions may
require move and copy services. All of these object services
are specified in the CORBA LifeCycle Service interfaces. To
create objects in a distributed system requires Factory

Objects. Although a GenericFactory is provided by Lifecycle
Services many factories are required to support creation of
different object types. Lifecycle Service object creation and
deletion also supports a reference to the Naming Service so
that when an object is deleted its associated name is also
removed. Other useful CORBAservices that may be used in
the future are Query, Event, Transaction and Property
services.

Figure 6 illustrates how the CRISTAL architecture relates

MOF
meta-metamodal

Meta
Object Facility

Workflow
Facility

Workflow Type
Repository

Workflow
Schema

Workflow
Object

Implementation of
workflow Schema

Layer Content Architectural Component

meta-metamodal

metamodal

model

instance

defines

corresponds

Figure 6. Workflow Facility Metamodal Architecture

to the 4 layer meta data model. The proposal for this type of
architecture was first advocated by Schultz[15] at an OMG
technical meeting. The MOF is capable of describing all the
types used in the CRISTAL workflow metamodel. There are
a number of proposals for a standard Workflow Facility
currently under consideration by the OMG.

A key role of the CRISTAL production workflow system
is to interoperate with PDM systems which describe the parts
to be manufactured. Within the Manufacturing Technology
Domain of the OMG there is already considerable progress in
specifying a PDM metamodel[16] which will be capable of
providing a range of PDM object models to support various
manufacturing industries. Using this metamodel approach
will allow changes or versions of the core metamodel to give
the “as built view” object model or “as maintained view”
object model or “as planned view” object model and other
object models to support the manufacturing business. These
object models will be stored in a repository and will
interoperate with other business systems like the workflow
system of CRISTAL. So that when changes occur in the
product design these changes can be propagated to the
production workflow system. Similarly changes to
manufacturing procedures in the workflow model can be
propagated back to the PDM “as built model”. There are
number of “product data management enablers” proposals
under currently under consideration by the OMG most of
which are based on Standard for the Exchange of Product
model data (STEP). In EDMS (the PDM that CRISTAL must
interoperate with) the proposal is to use a commercial
product to support all the PDM functions.

Conclusions

Our experiences of using metamodels and metadata at the
analysis and design phase in the CRISTAL project have
been positive. By modelling the workflow metamodel
separately from the workflow enactment runtime model it
has allowed the design team to provide consistent solu-
tions to dynamic change and versioning. Further by being
able to manipulate and reconfigure the workflow meta-
tmodel it will be possible to produce runtime work-flow
systems for a range of detectors and scientific systems. The
object models are described using UML which itself can
be described by the OMG MOF and more importantly is
the candidate choice by OMG for describing all business
models. Work is currently underway to implement the
metamodel using object interfaces defined in the OMG
CORBAservices and using an object oriented database to
support the construction of the workflow facility repository.

References

[1] Object Management Group. See
http://www.omg.org

[2] See http://www.javasoft.com
[3] See http://www.microsoft.com
[4] Object Management Group Publications. CORBA-

services: Common Object Services Specification
 [5] Maes, P. 1987 “Concepts and Experiments in

Computational Reflection”. ACM OOPSLA 1987
Proceedings. pp 147- 155

[6] Minsky M. 1974 “ A Framework for Representing
Knowledge”. MIT AI-MEMO 306 Cambridge, Mass.

[7] Roberts R. & Goldstein I 1977 “the FRL Primer”
MIT Laboratory for Computer Science. Technical Report
272 Cambridge, Massachusetts

[8] Lieberman H. 1981 “ A Preview of ACT1”. MIT AI-
MEMO 625 Cambridge, Massachusetts

[9] Goldberg A. & Robson D. 1983 “Smalltalk -80:
The Language and its Implementation”. Addison -
Wesley

[10] UML See http://www.rational.com
[11] OMG Meta Object Facility Joint Revised Sub-

mission Sept 1977 OMG Document ad/97-08-14
[12] OMG Unisys Response to the OMG Repository

Common Facility RFI November 1995
[13] J-M Le Goff et al., “CRISTAL - Co-operating

Repositories and an Information System for Tracking
Assembly Lifcycles” CERN CMS Note 1996/003

[14] OMG CORBAservices Manual
[15] OMG Publications. Technical document cf/97-05-08
[16] OMG Publications Product Data Management Enablers

RFP, Manufacturing Domain Task Force Doc. mfg/96-
08-01

