
Recent Developments in the Application of Object Oriented Technologies
in the CERN PS Controls

M. Arruat, F. Di Maio, N. Gomez-Rojo, Y. Pujante
CERN, PS Division

CH-1211 Geneva 23, Switzerland

Abstract

The software architecture of the control system of the
CERN PS complex [1][2] is strongly based on object
concepts. Equipment modules, designed and
implemented during the late 70s, introduced the concepts
of abstraction and encapsulation, leading to an object
oriented implementation during the 80s. The current
software architecture, set-up during the past 6 years,
implements a well-defined object model in the front-end
computers from which the console-level classes have
been derived. In this context, the integration of the object
oriented technologies is a natural and continuous
process.

This paper reports on the recent evolution of this
architecture at the console level: the migration of the
system libraries to C++, the introduction of object
oriented Computer Aided Software Engineering (CASE)
tools, the connection with CDEV [3] and the integration
of Java.

1 Introduction

1.1 Objects in the PS Control

In the CERN-PS complex, control entities (e.g. device
classes, device instances, front-end computers or
hardware modules) are all described in a configuration
database [4]. The control device objects are implemented
in the front-end computers using the equipment module
concept: every element belongs to a well defined class,
which describes the structure of the instance variables as
well as the Application Programming Interface (API),
which is composed of properties. These objects are
persistent, in the sense that they are created when the
front-end starts and that their state is maintained by
automatic back-up processes.

Application programs rely on workstation objects built
from the configuration data and from the front-end’s
objects. The programmer is provided with the following
libraries: (1) the “eqp” library (40 classes) that
implements all equipment-related services, (2) the “ppm”
library (10 classes) that implements access to the timing
system, including synchronization facilities with machine
events, and (3) the “err” library (3 classes), which
handles exceptions and error logging.

1.2 C++ Migration

A migration from C to C++ has been executed for these
workstation libraries, including re-coding the more
important one: “eqp”. The motivation was to organize in
a better way the long-term maintenance of these ever
changing software packages, in the context of a high
turnover of the developers. We aim at having a more
robust code and maintenance activities both more
interesting and more efficient.

As concrete objectives: the life-time of the operators’
programs required improvements, unstable
implementations of the synchronisation services required
some encapsulation, a revision of our equipment access
library had to be produced and we have to be prepared to
continuously cope with new requests.

2 Console Objects Design

The objects described in this paper are used in the
software developed for the operator’s workstations
(Unix). Some particular aspects of these console objects
are described below.

2.1 Equipment Objects

Equipment objects represent a homogeneous part of the
equipment (e.g. a list of power-supplies) and implement
the transaction functions (read/write/call). A simplified
class diagram is shown in Fig.1. EqpElement objects
describe individual pieces of equipment, each of which
belongs to one EqpModule object, which implements
their front-end level class.

EqpModule

getName()
getNumber()

EqpEquipment

call()
read()
write()

EqpElement

getName()
getNumber()
getDescription()
getHostName()
isPpm()

Fig. 1: Simplified model of the Equipment class

2.2 Static Objects

Many console objects belong to a special category
called static. These objects are built from the
configuration database (Oracle tables). Their instance
variables are defined by the configuration database and
cannot be modified directly by the application programs.
As examples, the EqpElement and EqpModule classes,
displayed in Fig.1 implement static objects. These objects
are built through a 2 step process: (1) data structures are
extracted from Oracle tables and distributed into Unix
files and (2) C++ objects are created from these files
when required and kept in the task’s address space
afterwards. Such a process is very close to the behavior
of an object oriented database. This two step procedure
also fulfills the requirement of having one independent
sub-net per accelerator by distributing redundant and
read-only copies of the configuration data to many
servers. Static objects that don’t have these requirements
are implemented by direct connections between C++
methods and PL/SQL (the database programming
language) functions.

2.3 Meta data

Another aspect of the console objects is that the
description of the front-end classes is accessible through
C++ classes and that this description is complete enough
to allow a generic implementation of many operator
facilities: displays, control panels, archives, etc.

EqpPropContDesc

getMaxPropertyCode()
getMinPropertyCode()
getResolPropertyCode()
getTolrPropertyCode()

EqpPropDesc

getCode()
getName()
getDataMaxDimension()
getDataType()
getFormat()
getTitle()
getReadFlag()
getWriteFlag()
isPpm()
getTrmPropertyCode()

EqpModule

EqpPropDiscrDesc

EqpPattern

getLabel()
getMask()
getValue()
getColor()

Fig. 2: Property description classes

As an example, Fig. 2 illustrates a part of the
description of a front-end class. This description is
composed of a list of properties supported by the
equipment-module. Property descriptions (PropDesc) are
provided, with the distinction beween continuous

(PropContDesc) and discrete (PropDiscrDesc) properties,
for which the data (bit patterns or enumeration) belong to
a closed set, described by means of patterns.

3 Object Oriented Software Engineering

When trying to use software engineering methods in the
software design phase, one has to cope with two
consecutive problems: (1) to build competence in a
method and in the correlated tools and (2) to be able to
maintain up-to-date models all along the software
exploitation phase. This second problem is the more
difficult to tackle: although, in theory, models should be
kept up-to-date, in practice, once people move on to
coding, models are not edited anymore. As a result, while
the initial design is neither complete nor exempt from
errors, the distance between the code and its model grows
with time.

Compared to Structured Analysis and Structured
Design (SASD) methods, object oriented methods offer
new possibilities: because of the strong coupling between
the design models and the code, one can try to use tools
for keeping models and code synchronized. An attempt
was made to follow this line, with some success.

3.1 Reverse engineering

The “eqp” library, which was a C library, was first
manually reverse engineered into an OMT [5] class
model, reflecting exactly the structure of the C objects.
This was very useful for the maintenance of the C code
because the class model is a good communication media.
Such a procedure, however, was not efficient enough to
prepare important changes, because of the duplicated
maintenance of both the model and the code.

Another approach has been explored with the “ppm”
library, which was already a C++ library. Using a
commercial product (Rational Rose£), the C++ header
files were analyzed in order to produce class models in an
automatic manner. This has been a rather tedious process,
requiring a lot of interaction as well as some help from
the company (consultant). It took us 2-3 months of an
expert engineer to master the technique. Nevertheless, the
results are satisfying enough to adopt the procedure of
using reverse engineering tools to re-generate models
from code when required.

3.2 Code generation

The new C++ version of the “eqp” library was
produced, with the following steps: (1) the new version
was re-designed by means of OMT models, (2) it was
implemented using the code from the C version, (3) the
code was analyzed, in order to re-generate an up-to-date

£ 1997 by Rational Software Corporation

model and (4) diagrams (class and scenario) have been
manually produced as a design documentation.

A more systematic approach was applied for the new
version of the “ppm” library: (1) the design was made by
means of OMT models, using the analyzed classes from
the previous version (2) the model was used to generate
code (headers and functions skeleton), (3) the new
version of the library was implemented from this code
and from the previous version. The model has been kept
up-to-date by adopting the method of always updating the
model first.

3.3 Consequences on the code

There have been a lot of consequences on the code,
especially on header files. Code analyzers introduce new
constraints that compilers, even C++ level, do not
require. It was, for instance, necessary to get rid of all
circular dependencies by replacing some inclusions of
class definition with forward declarations.

Code-cycled files (the ones that can be modified from
the model) include a lot of the tool’s specific annotations,
that identify the segments of code produced by the tool
and the segments of user code. These annotations allow,
for instance, to preserve the methods’ bodies when re-
generating the code from the model but they also reduce
the readability of the code files.

3.4 Documentation

An additional benefit obtained in introducing CASE
tools was the production of on-line documentation. We
are not able to maintain man pages, or any equivalent on-
line reference documentation if not generating them in an
automatic manner from code files. In this perspective,
Web pages are now produced from the C++ header files
to describe the classes, their syntax and some description.
This has been achieved by adopting some conventions on
the description entered into the models and by using
converters which transform these into HTML format.
These converters are homemade filters that convert Rose
annotations into doc++ comments [6]. This proves to be a
practical method of producing on-line reference
documentation from header files. This procedure has
been adopted for most of our C/C++ libraries, including
some front-end ones. This method also exists in the Java
environment (javadoc).

4. Programming Issues

4.1 Container classes

In the design of the class libraries, we restricted the
usage of container classes to the following categories:
unbounded ordered lists and unbounded key sets. In
addition, only pointers to object are stored into
containers, instead of objects themselves; this implies

explicit destruction but reduces the usage of copy
constructors. Unlike Java, such container classes are not
part of the C++ default environment but they have been
standardized later in the Standard Template Library
(STL). For now, we uses IBM’s container classes, which
are also based on templates and iterators.

When using class templates, we encountered the
problem of having some template classes generated
twice. This was fixed by including all template classes
into the libraries and by preventing the client application
to generate them, via a compiler option.

4.2 Exceptions

Using exceptions is another important choice to make.
It was decided to use them extensively. We had good
experience with this choice: incomplete error treatment
was detected quickly and easily solved with debugging
tools because the program breaks into the debugger
where the error is detected and not on secondary effects.
For example, raising an exception is safer than returning
a NULL pointer as an error indication. In addition,
exceptions are the simplest way to cope with errors
within constructors.

Another very useful aspect of the exceptions is that
they provide a more efficient way of logging errors. The
previous convention was to log errors where they were
detected using dedicated functions and then to return an
error indication for the caller, which can, as well, log a
higher level error. We replaced this with a hierarchy of
error classes which provide logging functions. Objects
thrown as exceptions always belong to this hierarchy.
This allows a better filtering of the error logs and the
composition of more complete error messages. It has
some similarities with the Exception class of Java, the
base definition of which being to store an error message.

4.3 Data Objects

While the libraries are strongly oriented towards
generic software, the data exchanges between the
application programs and the front-end objects require
dedicated objects that encapsulate the actual data
representation and provide the various conversion and
buffer management services. Dedicated data objects were
developed for this purpose. The code duplications and the
memory leaks were significantly reduced this way. The
data classes are implemented by means of class templates
in order to support many data types.

Another role of the data objects is to be a data exchange
medium between different libraries, like transmitting
composite data read from the equipment to some display
services. In this role, some more widely used classes (e.g.
cdevData) would probably be more adequate than a local
implementation.

5. Connection with CDEV

The connection of the CERN-PS equipment classes to
TJNAF’s CDEV [3] has been prototyped, using the
CDEV’s method of interfacing control systems. This
method, based on deriving local classes from cdevService
and cdevRequestObject classes, is rather simple,
especially for control systems using a restricted API, like
the CERN-PS one.

A preliminary version of this connection was
implemented with CDEV 1.3. The supported messages
are restricted to “get” and “set” verbs + attribute. The
mapping from CDEV concepts to CERN-PS ones is the
following: device names are element names, device
classes are equipment modules and attributes are
properties. The implementation took about one month
and one thousand lines of code. Error reporting (a general
feature) and ppm integration (a CERN-PS feature: pulse
to pulse modulation) will require additional work for a
complete implementation.

This connection provides the possibility to use some of
our software packages outside of the CERN-PS context.
The work done with CDEV was also very valuable in the
re-design of our classes: we adopted some CDEV
concepts, like the data objects and the “Service” class.

6. Java

It is being considered to produce some application
programs in Java, especially in the perspective of a new
machine (Antiproton Decelerator). As a result, a Java
implementation of the console objects is being
developed.

The direct connection between Java classes and the
C++ classes through JNI (Java Native Interface) was
prototyped. This solution will be adopted for providing
the programmers with a Java API to the CERN-PS
controls. It will only allow running Java programs on the
control’s workstations, but it will be the base for
launching developments with Java.

The Remote Method Invocation (RMI) has been
prototyped as well, this solution is considered for
implementing a Java API for remote clients.

We have now to adopt an API that not only can be
easily implemented by means of wrapper Java classes
talking to C++ objects via JNI but that can also be
implemented with remote objects, via RMI or CORBA.

Many application programs are still produced by
C/Motif programmers who don’t use C++ or OO design.
In this case, Java, instead of C++/Motif, is being
considered as the OO learning environment.

7. Conclusions

The migration of the equipment access library from C
to C++ was the central part of an important evolution
toward OO technologies in the domain of the software

design and implementation. Many positive consequences
of this evolution can be observed.

Firstly, the quality of the code has been greatly
improved, in terms of robustness and maintainability.
Memory leaks are no longer disturbing the operators’
environment and we could easily cope with the required
extensions during 1997.

Secondly, the introduction of a more routine usage of
CASE tools improved a lot our working methods: better
team work, more care in the design and a better design
documentation. As an example, during the last year, each
of the authors of this paper provided a significant
extension of the “eqp” library.

Thirdly, replacing C with C++, as a programming
language, not only goes with the interests of professional
programmers, but also allows us to get rid of local
conventions for coding objects in C. This facilitates the
connection with another OO equipment access API and
the extension towards Java.

After to the migration of the system libraries to C++,
the next step, in the application of OO technologies in the
CERN-PS context, will probably be the application
programmers starting to use Java.

8. Acknowledgments

We benefit from the services of our CERN colleagues
(ECP/IPT group) who take care of the commercial and
technical aspects for making CASE tools available.

The French office of Rational Software Corporation
offered some very helpful assistance in the reverse-
engineering phase.

CDEV from TJNAF is a very useful reference of an
object oriented equipment access for the concepts and
their implementation.

9 References

[1] F. Perriollat, C. Serre, “The new CERN PS Control
System - Overview and Status”, in ICALEPCS 1993
proceedings, Berlin, Germany, Nucl. Inst. and Meth.
A352 (1994).

[2] CERN PS Controls, “PS/CO Group” ,
http://www.cern.ch/CERN/Divisions/PS/CO.

[3] C. Watson, J. Chen, D. Wu, W. Akers, “cdev”,
http://www.jlab.org/cdev.

[4] J.H. Cuperus, M. Lelaizant, “Integration of a
relational database in the CERN/PS Control System”,
this conference.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, “Object-Oriented Modelling and Design”,
Prentice Hall, 1991.

 [6] M. Zockler, R. Wunderline, “DOC++”,
http://www.zib.de/Visual/software/doc++.

