
Automated Task Scheduling Using Multiple FSMs at Fermilab

Linden Carmichael
Fermilab, Batavia, IL, U.S.A.

Abstract

 Fermilab will enter a new operational era with the
installation of the Main Injector (MI), a circular
accelerator and the Recycler (RCYC), a anti-proton
storage ring. This transition will induce a significant
increase in the complexity of the operational scenarios
undertaken and has prompted the design of a more
sophisticated task scheduler, one that is capable of
providing a level of versatility, efficiency and
automation to the process of generating task schedules.
Task schedules, which serve to co-ordinate the various
Fermilab machines, are currently defined by utilizing a
de-centralized repository of heuristics related to how the
different machines interact. The proposed task scheduler
encapsulates these heuristics by resolving task schedules
into sets of task groupings termed modules and then
assigning various attributes to these modules. These
attributes, which denote heuristics such as how quicky
MI resets can be generated, serve to define the
relationship of tasks within modules and modules within
task schedules. The implementation of this task
scheduler involves a Graphical User Interface (GUI) to
create schedule specifications, multiple Finite-State
Machines (FSMs) to resolve modules and attributes into
a task timeline and a hardware module which dispenses
the tasks to the various machines. This paper will
illustrate a sample task schedule and provide a brief
discussion of the implementation of the FSMs.

1 Introduction

 The physical layout of the Fermilab facility includes a
linear accelerator (LINAC), three circular accelerators
(BSTR, MI, TEV), three storage rings (ACC, DBNCHR,
RCYC) and an assorted number of beam lines. These
different machines are connected and co-ordinated
through a 10 MHZ hardware link (T-CLK) utilizing 256
manchester encoded events. Each machine task is
denoted by a unique 8-bit event mask which is
generated by the Time-Line Generator (TLG) hardware
module. The prior incarnation of the task scheduler [Ref
1.] required that each time slot in a schedule be
independently specified with an event mask. These
schedules were then downloaded as flat files to the TLG
which would then place the events on T-CLK.
 The design for the new task scheduler is based, in part,
on the work done at CERN with its PS accelerator
network [Ref. 2]. The emphasis, at CERN, was in
creating a comprehensive Knowledge-Base of its various
accelerators and then designing a rule-based task
scheduler that utilized this Knowledge-Base in order to
generate task schedules. The task scheduler under
development at Fermilab represents more of a
parameterization of task schedules through the module
definitions. The attributes attached to each module
provide a method of automatically adjusting task
placement as the various operational scenarios tend to

fluctuate somewhat, initially, before becoming well
defined.

4.42s 2.4s 2.4s 2.4s 2.4s

60s

 1 2 2 2 2 1

Figure 1. Sample Schedule

1 2 = Tev Reset = P_bar Prod

BSTR:

MI:

TEV:

holdoff time = 4.42 s

holdoff time = 60 s

module = Tev Reset

Figure 2. Sample Modules

= event mask

BSTR:

MI:
holdoff time = 1.0 s

module = P-bar Prod

rep period = 2.4 s

2 Task schedules

 The process of defining task schedules is greatly
simplified by taking advantage of the inherent
dependency that exists between tasks and creating task
groupings termed modules, as illustrated in Figure 2.
Each module has a set of attributes assigned to it which
serve to characterize the behavior of tasks within the
module. These attributes fall into one of the following
categories: source attributes which dictate the influence
of outside parameters on module tasks, placement
attributes which describe where tasks are placed within
the time range covered by the module and constraint
attributes which define constraints on task placement.
Figure 2. desribes two typical modules that are used to
inject beam into the TEV and to stack anti-protons in a
storage ring. The Tev Reset module co-ordinates the

tasks in the BSTR, MI and TEV accelerators and has
source and constraint attributes attached to it. The
source attribute dictates how many BSTR batches to
inject into the MI while the constraint attribute, holdoff
time, limits how soon another TEV reset can be
generated after the one in this module is placed. The
P_bar Prod module controls the stacking of the anti-
proton storage ring and has a constraint attribute, rep
period, attached to it which limits the number of
stacking cycles that can be packed into a given time
range. Figure 1. illustates the output of the task scheduler
when given the two previously defined modules and the
specifications to inject beam into the TEV before
stacking as many cycles as possible. Adjusting the
attributes, rep period and holdoff time, allows the
operators to easily tailor the task schedule to the desired
operational needs. The key benefits obtained from this
formulation of the task scheduler is the flexiblity
imbeded in the task schedules, as illustrated in this
example and the level of automation provided, as will be
shown in the following section.

3 Scheduler implementation

 The procedure for creating and executing task
schedules involves three layers of processing, as
illustrated in Figure 3. The first layer defines the
console environment and consists of a dedicated GUI for
creating task schedule specifications and defining
modules which are then downloaded to the FSMs at a
second layer . Also, there exists an assorted number of
applications which, through the source attributes, are
capable of adjusting key elements of the various
modules being generated by these FSMs. The second
layer resides on a VME board and consists of FSMs
which compute task placement and then directs the
resultant task timeline to the TLG module. This module
denotes the final level of processing and serves to place
the 8-bit event representation of the tasks on T-CLK.
 The primary emphasis of this section is a description of
the second layer. This layer, as illustrated in Figure 3.,
consists of an interface and three FSMs. The interface,
designated by MOOC (Minimally Object Oriented
Communication), is a C-library that utilizes reading and
setting methods [Ref. 3] to communicate between the in-
house ACNET (Accelerator Network) protocol and the
VxWorks operating system being utilized by the FSMs.
 The FSM Test takes the schedule specifications and
attribute parameters downloaded by the GUI and
determines the corresponding time slots for the various
tasks. These time slots are then reported back to the
GUI. The FSM Place operates similarily with the
exception being that other applications, in addition to the
GUI schedule editor, are capable of influencing task
placement. Once a valid timeline of tasks is produced,
this FSM sends a signal to the FSM Play which then
proceeds to send the tasks to the TLG module at the
designated times. Furthermore, the FSM Play denotes
task schedules as being either primary or secondary with
the distinction being that on completion of a secondary
schedule, the primary schedule resumes playing.

GUI Appl. 1 Appl. n

ACNET

MOOC

TEST PLACE

PLAY WAIT

PLAY PRIMARY

PLAY SECONDARY

TLG MODULE

Layer 2: VME

Layer 3: Hardware

Layer 1: Consoles

events

Figure 3: Architecture

4 Conclusion

 The focus of this work has been on creating a task
scheduler that is versatile in order to handle the initial,
variable nature of the operational scenarios before they
become well defined. Additionally, efficiency and an
adequate level of automation were also motivating
factors for developing this formulation of the task
scheduler. The developmental cycle for this project is
characterized by three phases. Phase I, which has been
completed, involved a predominantly hardware effort in
moving the TLG module from a CAMAC to a VME
implementation. Phase II, which nears completion ,
involves the creation of the GUI at layer one and
designing the FSMs to communicate with the new TLG
module. The final phase involves the utilization of
multiple DSPs on an ALEX board in a multi-processing
environment .

References

[1] R. Johnson, W. Knopf, A. Thomas: "Time-Line
Generator and Controller" Controls Software
Release #109, Sept. 14, 1983

[2] F. Perriollat, C. Serre: "The new CERN PS control
system overview and status", ICALEPCS, Berlin,
Germany, Oct. 18-23, 1993, Nucl. Insr. and Meth.
A352(1994) 86

[3] J. Utterback, "Making Data Accessible to ACNET
from aVxWorks Front End",ADControls,
Aug.21,1995.

