
EPICS: Extensible Record and Device Support*

M.R. Kraimer and L.R. Dalesio
Argonne National Laboratory and Los Alamos National Laboratory

* Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract Nos. W-31-109-ENG-
38 and W-7405-ENG-36.

Abstract

 An important feature of an Experimental Physics and
Industrial Control System (EPICS)-based input/output
controller (IOC) is extensible record and device support.
This feature allows each site to add custom record types
and device support. This paper discusses the current
implementation and also some thoughts for making it more
flexible.

1 Introduction

 An EPICS IOC implements monitoring and control via
records. Each record instance is of a specific type, e.g. an
ai record is used to interface to analog inputs. Each record
type has an associated record support module, which is a
set of C language methods. In addition, each record type
can have an associated set of device support modules,
which implement device-specific methods. For example,
the ai record support module provides generic analog input
code. Each different type of analog input device has a
device support module that provides device-specific code.

Extensible record and device support provides the
ability to add new record/device support without
modifying any iocCore software. This paper gives a
description of how this is implemented and then some
ideas for future improvements.

Extensible record and device support has proven to be
an important feature of EPICS. Almost every large site has
added support for new record devices. New device support
modules are being developed continually as new I/O
devices become available.

2 Extensible record support

In order to create a new record type the following steps
must be done: 1) create a record description file, 2)
generate a C structure definition, 3) create a record support
module.

2.1 Record description file

 The record description file for the ai record is:

recordtype(ai) {
 include "dbCommon.dbd"
 field(VAL,DBF_DOUBLE) {
 prompt("Current EGU Value")
 asl(ASL0)
 pp(TRUE)
 }
 field(INP,DBF_INLINK) {

 prompt("Input Specification")
 promptgroup(GUI_INPUTS)
 interest(1)
 }
 . . .
}

 The first line in the record description defines the record
type. The second line is always an include for
dbCommon.dbd. This includes definitions for fields that
are common to all record types.
 Each additional field must have a field definition, which
contains at least the field name and type. Additional
attributes, for use by Database Configuration Tools,
Access Security, Record/Device Support, etc., can also be
defined.
 An EPICS record consist of fields. Each field must be one
of the following types:

1. A standard C type (unsigned char, . . . , double).

2. A string type which may also be an array of strings.

3. A menu type, i.e., the field describes a set of choices.

4. A link field that can reference another record (soft link)
or a hardware location.

5. A device type. One field DTYP (in dbCommon) is
handled as a special case. Associated with this field
is either field INP or field OUT. The DTYP field is a
menu field that obtains its choices from the last
parameter of the device definitions described below.
The bus type specified in the device definition
determines what can be stored in a link field. The
supported bus types and associated link contents are
hard-coded in a file link.h. The supported bus types
are: Soft Links, VME/VXI, CAMAC, Allen Bradley,
GPIB, Bitbus, and a couple of special bus types.

2.2 C structure definition

 The program dbToRecordtypeH creates a C structure
definition file from the record description file. This C file
is included by the record support module and also by any
associated device support modules.

2.3 Record support module

 A record support module contains a set of methods that
are accessed by iocCore via a record support entry table
having the following structure:

struct rset { /* record support entry table */
 long number;

 RECSUPFUN init;
 RECSUPFUN init_record;
 RECSUPFUN process;
 . . .
}

 Each record support module must define a global variable
for its record support entry table. This definition has the
form:

struct rset aiRSET={
 RSETNUMBER,
 report,
 . . .
}

 The global variable is aiRSET. It is permissible for any
support method to be null. During IOC initialization,
EPICS locates the address of the record support entry table
for each record type.

3 Extensible device support

 A device support module contains a set of methods that
are called by record support. These methods implement
device-specific code. For example, there is one analog
input record support module but a large collection of
analog device support modules, one for each supported
analog device. In order to create support for a new device,
a new device definition and a device support module must
be created.

3.1 Create a device definition

 A device definition has the form:

 device(ai,VME_IO,devAiXX,"XX device")

 The first parameter is the record type to which this device
support is related, and the second parameter is the bus type.
The third argument is the name of the global variable that
will be discovered at IOC initialization, and the last
parameter is a DTYP menu choice string.

3.2 Create the device support module

 The methods for a device support module are described in
a device support entry table which has the following
structure:

 struct dset {
 long number;
 DEVSUPFUN report;
 DEVSUPFUN init;
 DEVSUPFUN init_record;
 DEVSUPFUN get_ioint_info;
 /* other methods are record type dependent*/
}

 Each device support module must define a global variable
for its device support entry table. It has the form:

struct dset devAiXX={
 6,
 report,

 . . .
}

4 Implementation summary

 The preceding two sections described the syntax for
defining a record type and a device. In addition, a syntax is
defined for defining menus and record instances. The
complete syntax is called the EPICS Database Definition
Language.
 EPICS databases can be accessed via two libraries: static
database access and run-time database access. The static
library never calls any record or device support method
while the run-time library does. The static library is
supported on the cross development system as well as on
IOCs. The run-time library is supported only on IOCs.
 In general there are four types of software that need
access to EPICS records: Database Configuration Tools,
Channel Access Clients, IOC software accessing records in
the same IOC, and Record/Device Support accessing its
own record instances.
 Database Configuration Tools can only use static
database access. Channel Access Clients access records via
a channel access (CA) server that resides in each IOC. The
CA server in turn uses a combination of static and run-time
database access. Any IOC software can use a combination
of static and run-time database accesses to access records
in the same IOC.
 Record/Device Support uses the C structure definition to
directly access record instances of their record type. This
provides very fast access. A C structure is also generated
for dbCommon. This structure is included by many
components of the core IOC software. Thus the core
software can access these fields quickly.
 The early versions of EPICS did not have both static and
run-time access libraries. Originally there was only one
Database Configuration Tool that directly accessed the
internal structures used to implement the database. Thus,
whenever any change was made to the internal structures,
the Database Configuration Tool also had to be changed.
The static access library was created to fix this limitation
as well as to allow additional Database Configuration
Tools.

5 Discussion

 Although the design of extensible support was not
intentionally object oriented, the design does have an
object-oriented flavor. Here we discuss the good and bad
aspects of using object-oriented ideas.
 Since the structures generated from a Record Description
File contain only data and not methods, they are NOT
similar to Java or C++ classes. Because methods are not
present, a clear separation between static and run-time
database access is possible. This is a good feature and
should be kept. It also allows generation of C structures
that can be used by either C or C++ code.
 The record and device support entry tables are almost like
Java interfaces or pure abstract C++ classes. We can state
that EPICS databases are defined via a Database Definition
Language and an Abstract Interface Definition.

 The two main shortcomings of the existing
implementation are: 1) only two interfaces are defined:
RSETs and DSETs (actually a third called a driver entry
table is also defined), and 2) the way hardware links are
implemented makes it extremely difficult to support
arbitrary bus types and additional hardware configuration
information.

6 Possible future improvements

 The first change would be to support an arbitrary number
of interfaces. An Interface Definition syntax can be
developed that would allow automatic generation of C and
C++ module templates. A few interface definitions will be
used by core IOC software but additional interfaces can be
defined. A library will be provided to register and locate
interface implementations.
 The second change would be to redo the existing
implementation of links. This involves defining a Structure
Definition Format, eliminating DBF_DEVICE, adding
two new link types, DBF_IN_STRUCTURE and
DBF_OUT_STRUCTURE, and replacing the existing
device definition with a link definition.

6.1 Structure definition

 A structure definition is just like a record type definition
except that it begins:

structure(<name>) {
 field(. . .
}

and does not include dbCommon.

6.2 New link types

 Instead of DBF_INLINK and DBF_OUTLINK define
the following:

DBF_INLINK, DBF_OUTLINK
These provide the same functionality as existing soft
DBF_INLINK, DBF_OUTLINK, i.e., they are NOT
used for hardware links.

DBF_IN_STRUCTURE, DBF_OUT_STRUCTURE
These are the replacements for the existing
DBF_DEVICE and INP, OUT.

6.3 Link replacement for existing device definition

 The existing device definition will be replaced by:

link(<record_type>.<field>,<structure>,<interface>,
"<choice>")

where:

<record_type>.<field>
is the record type and the field within the record to
which this definition applies.

<structure>

is the name of a structure that contains additional
information for this link.

<interface>
is the name of an interface that will handle
processing of this link. The methods supplied by an
interface will be record-type specific. Methods,
however, will be defined that implement existing
functionality.

<choice>
is a choice string for Database Configuration Tools
and for choosing an interface for run-time
processing.

For example, the existing definition

device(ai,VME_IO,devAiDvx2502,"DVX-2502")

could be replaced by

link(ai.INP,VME_IO,devAiDvx2502,"DVX-2502")

where VME_IO is now the name of a structure rather than
a hard-coded definition in link.h.
 A record instance file currently has a definition similar to

field(INP,"#C0 S0 @").

 This would become something like

field(INP.VME_IO) {
 card(0)
 signal(0)
 parm("")
}

6.4 Benefits

 Because the link definition specifies both the record type
and a field name, there is no hidden dependency between
two fields like there currently is between DTYP and INP or
OUT. In addition, it is possible to have multiple link
definition fields in a record.
 Because the link specifies a structure name, arbitrary
information can be entered for the field. Thus, the currently
hard-coded information in link.h is replaced by a general
mechanism. Support for new bus types and other
configuration information is possible.
 Because the link specifies an arbitrary interface definition
rather than just a DSET, more general interfaces are
possible.

References

 The following web site contains a large collection of
EPICS documentation:
http://www.aps.anl.gov/asd/controls/epics/
EpicsDocumentation/WWWPages/EpicsDoc.html

Of particular interest for this paper are the Application
Developer's Guide and the Record Reference Manual.

