
A Control System for Accelerator Tuning
Combining Adaptive Plan Execution with Online Learning

C. Stern, E. Olsson, M. Kroupa, R. Westervelt
Vista Control Systems Inc.

1137 18th Street, Los Alamos, NM 87544
G. Luger, W. Klein

Dept. of Computer Science, University of New Mexico
Albuquerque, NM 87131

Abstract

 Vista Control Systems, Inc. is developing a portable
system for intelligent accelerator control. Our design is
general in scope and is thus configurable to a wide range of
accelerator facilities and control problems. The control
system employs a multi-layer organization in which
knowledge-based decision making is used to dynamically
configure a lower level optimization and control
algorithms. An object-oriented physical access layer (PAL)
supported by the Vsystem control database allows
abstraction from the lower level details of hardware
manipulation, signal processing, and synchronization. A
teleo-reactive interpreter [1] is used to sequence control
actions. To this framework we have been adding planning,
diagnostic, and learning capabilities.

1 An architecture for knowledge-based control

 The Intelligent Controls Group at Vista Control Systems
has been developing a general purpose, portable, intelligent
control architecture. To date this control architecture has
been tested at the Brookhaven National Laboratory ATF
facility as well as the ATLAS line at Argonne. In this
paper we describe briefly the concept of hierarchical
distributed knowledge-based control that guides our
development. We refer the reader to our other publications
for more details [2,3].

 Distributed control is implemented through a set of
knowledge-based controllers, each of which is an “expert”
in controlling some section of the environment or in
performing some function over that environment.
Knowledge-based controllers use planning, diagnosis, and
learning, as well as knowledge acquired from human
domain experts to select, sequence, and configure control
actions. Controllers are also responsible for reasoning
about the system state, diagnosing errors in controller
actions, decomposing goals into tasks and actions, and
initiating human intervention as necessary. Controllers are
hierarchically organized in a structural-functional hybrid
design, an example of which is shown in Figure 1.
 Controller actions include delegating tasks to other lower
level controllers or calling the services of a simpler type of
control component called a solver. Solvers are reusable
components that implement general purpose optimization
or control algorithms, such as hill-climbing optimization,
fuzzy logic or neural network-based feedback control,
conventional control loops, etc. Individual solvers are
generally assembled and coordinated so as to perform
more complex procedures. For example, locating the
magnetic center of a quadrupole is performed by
connecting a hill climbing minimization solver that scans
the magnetic surface of the quadrupole with a solver that
measures the quad steering, i.e., the displacement at a
monitor associated with tweaking the quad.
 Because the control system is knowledge-based, raw data
is rarely appropriate for direct manipulation by the
controllers. The opposite is also true: a low level interface
for manipulation of control elements is usually
inappropriate. For these reasons we developed an object-
oriented physical access layer or PAL as an abstraction
mechanism between controllers and the underlying control
system. The PAL offers a number of advantages.
 First, the PAL provides a mechanism for hiding
unimportant implementation details about the domain
hardware and provides a uniform interface for control
access. Second, resource conflicts can be handled, at least
initially, at a low level, and when appropriate, mediated at
the controller level. Third, controllers can pass filtering
instructions to the PAL to allow preprocessing of data into
a representation expected by a controller. This can happen,
for example, by giving the PAL fuzzy sets for classifying
data, or by passing a neural net encoding to the PAL.
Finally, the PAL is highly portable. By abstracting

PII Tuning

Transverse Optics Longitudinal Optics

PII0 PII1 PII2

Solvers

PAL

VSYSTEM

Figure 1. A control hierarchy for ATLAS.

underlying control elements, control algorithms can be
written in a generic manner. The same control framework
is usable in a variety of environments by merely updating
and exchanging the PAL objects.

2 Advantages of a distributed agent-oriented design

 Our architecture for intelligent control is intended to be
general purpose, with application to any domain where
complex nonlinear subsystems must be controlled to
perform specific tasks. As a result, it combines the top-
down approach of current hierarchical control
architectures, such as 3-T [4] with a bottom-up, "agent
based" approach. The result is a system that can
accomplish complex problem solving through the
coordination of simpler, task specific agents.
 The justification for this design philosophy can be
summarized as follows. Simple, task specific agents have
the advantage of operating in a smaller, more constrained
problem space, which simplifies the tasks of learning and
adaptation. Capabilities and performance improvements
acquired through learning in this smaller problem space
propagate up the hierarchy by providing a wider range of
basic capabilities that can be assembled into larger units.
Functional composition thus allows the system to leverage
performance improvements at lower levels into
performance improvements at all levels of the hierarchy.
 We have taken several approaches to learning and
adaptaton. We have experimented with low level learning
in the form of pattern recognition and feature detection in
the PAL through the use of adaptive filters attached to
feedback objects. Neural networks, fuzzy classifiers and
other adaptive tools have been used to identify and store
information regarding system state.
 A second locus of learning and adaptation is at the
controller level. Our teleo-reactive execution regime,
described in the next section, provides a variety of
opportunities for adaptation. Adaptive execution has
played an important role in our field tests at Brookhaven
and Argonne [2]. We are currently working on extending
our teleo-reactive execution environment with action
model learning and adaptive planning. A description of this
work is the main focus of the remainder of this paper.

3 Teleo-reactive control

 Controllers in our architecture use an intelligent
executive mechanism called teleo-reactive (TR) control
[1]. TR control occupies a region between feedback-based
control and traditional discrete action planning. TR
programs sequence the execution of actions that have been
assembled into a certain kind of goal-related plan. Unlike
traditional planning environments, no assumption is made
that actions are discrete and uninterruptible and that an
action's effects are completely predictable. On the contrary
teleo-actions are typically durative and are executed as
long as the action's preconditions hold and its goal has not
yet been achieved (unless some other action closer to the
final goal becomes activated.) A short sense-react cycle
ensures that when the environment changes, the control
action changes to fit the new state.

 The assumptions under which TR plans are assembled
differ from the assumptions of conventional discrete action
planning. The primary differences are:
i) Actions can be either discrete or continuous.
ii) Actions are not guaranteed to achieve their goals.
Continuous or durative actions are expected to achieve
their goals when executed for an indefinite period of time
under normal conditions. Repeated failure to achieve its
goal under normal conditions can result in retraction or
modification of the action operator.
iii) Actions can be interrupted in response to changes in the
environment.
iv) Like the primary effect or goal of an action, other
effects (side effects) are not guaranteed to result. The only
guarantee is that if the action is performed continuously for
some period of time, known side effects will occur
stochastically with some probability.
 TR action sequences or plans are represented in a data
structure called a TR tree. A TR tree can be described as a
set of condition-action pairs:

C0 à A0
C1 à A1

 …
Cn à An

where Cs are conditions and As are the associated actions.
C0 is typically the top level goal of the tree and A0 is the
null action, i.e., do nothing if the goal is achieved. At each
execution cycle the Cis are evaluated from top to bottom
until the first true condition is found. The associated action
Ai is then performed. The evaluation cycle is then repeated
at a frequency that simulates the reactivity of circuit based
control.
 TR trees are constructed so that each action Ak, if
continously executed under normal conditions, will
eventually make some condition higher in the tree true.
This then ensures that under normal conditions the top
level goal, C0, will eventually become true. TR tree
execution is adaptive in that if some unanticipated event in
the environment reverses the effects of previous actions,
TR execution will typically fall back to some lower level
condition and restart its work towards the top level goal.
On the other hand, if something "good" happens, TR
execution is opportunistic: when some higher condition
unexpectedly becomes true, execution shifts to the action
associated with that condition.
 We have been employing teleo-reactive execution in our
accelerator control system for over six months with
considerable success. It has now been tested at both
Brookhaven and Argonne. It has been particularly effective
in adaptively resteering in the middle of focusing and linac
tuning operations to correct for incidental orbit changes
caused by those operations.
 The teleo-reactive mechanism provides a useful
framework for representing and implementing accelerator
tuning algorithms for several reasons:
i) Accelerator beams and their associated diagnostics are
typically dynamic and noisy.
ii) Achievement of tuning goals is often affected by
stochastic processes such as RF breakdown or oscillations
in the source.

iii) Many of the actions used for tuning are durative. This
is often true of tweaking and optimization operations: they
are typically done until specific criteria are met.
iv) We have found TR trees to be an intuitive framework
for encoding tuning plans acquired from accelerator
physicists. Richard Pardo of Argonne, for example,
encoded, with relatively little assistance, a TR plan for
tranverse tuning of the PII beam line.

3.1 Teleo-reactive planning

 TR trees can also be represented as graphs (Figure 2)
encoding the relationships between goals, actions, and
subgoals. At each execution cycle, the action associated
with the highest true condition in the tree is selected for
execution. In Nilsson's original formulation [1], when the
highest active level contains more than one action with
satisfied preconditions, some arbitrary probabilitistic
method is used for choosing between possible actions. We
have modified this by dynamically maintaining numerical
confidence levels associated with actions and choosing
actions with the highest associated confidence.
 Construction of TR trees can be accomplished through a
planning algorithm that is a modification of common AI
goal reduction planning algorithms. Starting from the top
level goal, the planner searches over actions whose effect
includes achievement of the goal. The preconditions of the
action generate a new set of subgoals, and the procedure
recurses. Termination is achieved when the preconditions
of one of the leaf nodes of the tree is satisfied by the
current state of the environment. That is, the planning
algorithm regresses from the top level goal through goal
reduction to the current state. Actions, of course, generally
have side effects, and the planner must be careful to verify
that an action at any level does not alter conditions that are
required as preconditions of actions at a higher level. Goal
reduction must consequently be combined with constraint
satisfaction, where a variety of action reordering strategies
are employed to eliminate constraint violations.
 TR tree planning algorithms typically build plans whose
leaf nodes are satisfied by the current state of the
environment. They do not build complete plans, that is,
plans that can start from any world state, because such
plans would generally be too large to efficiently store and
execute. This is an important point because sometimes an
unexpected environmental event can shift the world to a
state in which no action preconditions in a TR tree are
satified. In that case, replanning is necessary.

3.2 Teleo-operators

 Durative actions require a reformulation of traditional
STRIPS-style action operators [5]. During the continuous
execution of a durative action, there can be a sequence of
intended and incidental (side effect) state changes in the
world, all of which are consistent with continuing the
execution of the action until its goal condition is produced.
For this reason, use of a durative action to achieve a goal is
associated with a range of potential starting states from
which the action can be effective. Instead of the
precondition-based action operators used in traditional

STRIPS-style planning [5], teleo-reactive planning must
rely on a concept borrowed from robot motion planning:
the concept of a preimage. A preimage π is the regression
of a goal condition through an action. It is defined as the
condition or constraint which an initial state must satisfy
in order that continuous performance of the action will,
under normal conditions, produce the goal condition.
 A preimage π typically defines a region of potentially
effective action. This can perhaps best be understood by
considering an example from the motion planning domain.
Suppose the goal is to move the robot to some location

(x,y). The action is to move NE, i.e., 45o. The
preimage π that results from regressing the goal, move to

(x,y), through the action, move NE, is the 45o line segment
extending SW from (x,y). Note that the action, move NE
will pass through the point (x,y) iff it is started from a

point on this specific 45o line segment.
 A goal-action pair and its associated preimage are called a
teleo-operator (TOP). Preimages for TOPs are often
difficult to compute with precision because it is difficult to
anticipate the full range of conditions under which an
action will fail (or succeed). One method proposed by
Benson [6] is to use approximate preimages and then learn
more accurates preimages from experience. This involves
keeping traces of the TR tree execution and then using
inductive concept learning to induce preimages from the
trace data. If preimages are represented as conjunctions of
condition literals, induction of preimages is the problem of
finding the right concept, i.e., the right conjunction of
literals that is satisfied in all the cases in which the TOP
was used successfully but unsatisfied in all the unsuccesful
cases. A variety of machine induction algorithms,
including Inductive Logic Programming (ILP) [7] can be
applied to this task.
 On the other hand, the use of the TOP representation in a
highly constrained, well-modeled domain such as particle
accelerators presents other alternatives. There are certain
obvious ways in which to derive TOPs from accelerator
models. Assuming the goal is to produce a specified beam
conditon Cb at some location L, one method is to start
from the beam condition at some upstream location L0 and
ask the model to fit for magnet settings (for appropriate
magnets) that give the condition Cb at L. In other cases,
one could make repeated calls to a fitting algorithm to find
the range of upstream beam conditions at L0 from which

 C0

 C1
 C2

 C3 C4

 C5

a1 a2

a3 a4

a5

Figure 2. A TR plan graph

Cb can be produced. Another possibility is to use
simulation to experiment with potential actions and
establish the preimages of each.

4 Diagnosis, replanning and learning in the TR model

 Execution failure can occur in a TR tree in three ways:
i) the TR tree enters a state in which no node is active,
ii) the TR tree is stuck in a cycle involving two or more
nodes, or
iii) the tree is stuck in a cycle involving a single node.
 The first case arises because the control plan is
incomplete and does not include an action responding to
some unexpected state. In the second case some node
repeatedly terminates execution before its parent node
becomes active (because it makes it makes its own
preimage condition false). In the third case a single node
repeatedly executes without making its parent active.
 In the first case, the plan fails because the controller has
entered a state for which it does not have an appropriate
action. This state might have arisen as an unanticipated
consequence of the TOP action or as a result of some
external perturbation. In either case, failure occurs because
the plan is incomplete and needs to be extended to cover
the new unanticipated state.
 Following Benson's suggestion [6], the way in which we
handle this case is through replanning. Rather than build a
new plan from scratch, replanning extends the current plan
by goal reduction from top level goals to the new state,
using the same method as the original planning algorithm.
This will, in effect, add a new branch to the tree in addition
to the original branches. We expect that after some long
term period of application and repeated replanning, the tree
will be extended to handle all of the commonly occurring
states in its environment.
 The second and third types of failure, multi- and single-
node cycling, are either related to a mechanical failure in
an actuator or sensor or result from an inaccurate action
model (TOP). Our control system relies on solver routines
for automatic magnet and BPM calibration to distinguish
mechanical malfunctions from TOP failures.
 TOP failures result either from a preimage
condition π that is either too large or too small. In the
former case, the starting condition for the action is not
tightly enough constrained to ensure that the action will
produce its intended effect. In the latter case, the preimage
condtion is too tightly constrained and becomes false
before the action finishes execution, even though it would
have achieved its intended goal.
 Our current development path includes the automatic
derivation of action models or TOPS from accelerator
models. When TOPs that are derived from model fitting
are diagnosed as having incorrect preimage conditions, it

follows that there is a corresponding error in the
accelerator model. This suggests the possibility of using
the diagnosis of TOP failures to detect errors in
accelerator models. We are considering possible develop-
ment of an automated tool for analysing model
inaccuracies based on this approach.

5 Summary

We have described a distributed hierarchical architecture
for accelerator control with adaptation and learning
capabilities. This hybrid architecture integrates a variety of
methodologies, including teleo-reactive trees for dynamic
exception handling and replanning. Preliminary tests [2]
indicate the potential for equaling the performance of
skilled human operators. Continuing research includes
extending the diagnostic, planning and learning
components of the system.

Acknowledgements

This work was supported by a DOE SBIR grant
(#DE-FG05-95ER81897) to Vista Control Systems, Inc.

References

[1] Nilsson, N. J. 1994. Teleo-Reactive Programs for
Agent Control. Journal of Artificial Intelligence
Research, 1, pp. 139-158, January 1994.

[2] Klein, W., Stern, C., Luger, G., and Olsson E. 1997.
An Intelligent Control Architecture for Accelerator
Beamline Tuning. Proceedings of the Innovative
Applications of Artificial Intelligence Conference,
Cambridge MA: MIT Press.

[3] Klein, W. 1997. A Software Architecture for Intelligent
Control. Doctoral Dissertation, Department of
Computer Science, University of New Mexico,
Albuquerquen, NM.

[4] Ansaklis,, P. J., Passino, K. M., and Wang, S. J. 1989.
Towards intelligent control systems: Architectures and
fundamental issues. Journal of Intelligent and Robotic
Systems, 1: 315-342, 1989.

[5] Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 189-208.

[6] Benson, S. 1995. Inductive Learning of Reactive
Action Models in Machine Learning: Proceedings of
the Twelve International Conference, San Francisco
CA: Morgan Kaufmann.

[7] Muggleton, S. and Feng, C. 1990. Efficient induction
of logic programs in Proceedings of the First
Conference on Algorithm Learning Theory, pp. 368-
381.

