
‘Sharable GUI Objects for the Operators’ Console

S.Dasgupta* and Isamu Abe
*Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700 064, India

KEK, 1-1 OHO, Tsukuba, Ibaraki 305, Japan

Abstract

 The accelerators over the world show a great variety, and
the control systems of these are also varied. In the 3-tier
control systems, the lowest levels are implemented
according to the availability and historical situations
regarding the hardware devices. The middle level is also
influenced by the types of computers and the lower level
devices. The top level (Man-Machine Interface) shows a
considerable similarity because of necessities of human
interactions. The article discusses an attempt for finding of
the most universal objects of such an MMI. This should
enable the designers to apply modern tools for object
oriented designs of accelerator MMI. The Java language
and its tools can be utilised to develope framework of
MMI’s which are muti-platform. It will then become
suitable for producing re-usable codes for tailoring and fast
reproduction at different accelerators.

1 Introduction

 Human beings conceive operation parameters and
physical principles of accelerators in most similar ways.
Therefore it is worthwhile to analyse the MMI objects of
dissimilar accelerators for their mutually sharable
attributes and behaviours. The Operation Console and its
objects pertaining to the linear accelerator PF LINAC of
KEK, Japan, and the cyclotron of VECC, Calcutta, are
dealt with in this case. This report describes a work to
produce specifications for MMI classes and also to specify
the public interfaces of the underlying classes and objects
to implement a sharable MMI. Descriptions of the
decomposition of the concepts are vital for mutually
aggreeable object classification.

2 Entity-description

 It is necessary to develop concepts about attributes and
behaviours of both underlying entities and MMI entities in
a cooperative way.

2.1 MMI entities

 In absence of high level automation, an accelerator
operator relies on a sub-system oriented break-down in his
conception of the machine. His interface objects need to
implement the functions to control, monitor and log
concrete physical parameters implementing the subsystems.
Our operation MMI contains subsystems ‘Vacuum’,
‘Injector’, ‘Magnet’, ‘Rf’, ‘Beam Transport’, ‘Target’ and
‘Beam Diagnostics & Beam Handling’. Moreover an

operator MMI can also have components to interact at a
more macroscopic level, wherever advanced automation
encompassing several sub-systems is available.

2.2 Underlying entities

 Other kinds of entities which are part of the control
system and deal with messages to and from console MMI
are
Devices : The hardware and equipment to implement
 sub-systems
Auxiliary : Other types of entities, working as direct
 accessories to the Device class
Services : Power supplies, water-flow, air
 conditioning etc..
Parameters : Physical parameters that require monitoring,
 control or logging
 Our MMI entities must contain the above underlying
entities as their ‘known’ attributes.

3 Class formation - MMI classes

 Based on studies and operation experiences, entities
within individual sub-systems, were listed, as necessary
attributes of the proposed corresponding MMI class.

3.1 Attributes- MMI classes

Class MMI_Vacuum
Pumps, FlowSwitches, OilLevel, Gauges, GateValves,
Status etc..
Class MMI_Rf
Oscillators, Amplifiers, Co-ax. Switch, Setting,
SignalMode, PeakAmplitude, Frequency, MacroFrequency,
Harmonics, Phase, SWRatio, PowerSupplies,
FlowSwitches etc..
Class Magnet
Coils, PowerSupply, Setting, AverageField, Field-
Component, Harmonic_n, PeakAmplitude, FWHM,
Rigidity, FlowSwitches etc..
Class MMI_Beam
Particle, Avrg Amplitude, PeakAmplitude, MacroWidth,
Power, HarmonicPower, Oscillation Ampltd, Orbit
Separation, Size, Profile, Phase, Emittance, WCMonitor,
CurrentProbe, ProfileMonitor etc..
Class MMI_Injector
SpeciesMass, SpeciesCharge, BunchState, Electrodes,
Pulser, Slit, Puller, PowerSupply, Current, Buncher,
Lenses,
Solenoid etc.
Class MMI_BeamTransport

Quadrupole, AnalysingMagnet, EmittanceMonitor, Profile
Monitor, WCMonitor, TwissParameter, Emittance,
Acceptance, BunchLength, EnergySpread, etc..
Class MMI_Target
Collimator, Sweeper , GateValve, Angle, etc..

4 Class formation - underlying classes

 All objects in the control system excluding the MMI objects
are defined as objects of same or another Underlying class.
One Underlying class is to take care of each ‘Underlying
entity’ described earlier. The ‘device’ class here is the
template for most of the devices and equipments that the
MMI communicates to in the first order.

4.1 Attributes- underlying classes

Class Device
Equipments, Instruments, Control Panels, Status, On/Off
Switch, Inc./Dec. Control, Setting, Range, FlowSwitches etc..
Class Auxiliary
Motors, Smart controllers, Instruments etc..
Class Services
Status, Magnitude , Mode etc..
Class Parameters
PeakValue, AverageValue, RMSValue, Phase, Frequency,
MacroFrequency, HarmonicFrequency, Power, WaveForm,
SetValue, HiAlarmValue, LoAlarmValue, Status etc.

5 Formation-root MMI class

 Presentation schemes for the data logging, monitoring &
control operations and messaging schemes to underlying
objects have been designed to be uniform among different
MMI objects. So similar working variables can be
maintained for all. All these prompt for the construction of a
root MMI classs, to serve as the parent for the MMI sub-
classes.

5.1 ‘Group’

 For generalisation, data presentations and control
interactions are planned to occur groupwise. Operator
configured individual ‘group’s will have a name and
contain collections of parameters or control panel frames.
 The class tree for the control system with special
reference to MMI classes, can be specified as in Fig. 1.

5.2 Attributes-root MMI class

Device m_TheDeviceUnder[] : subsystem device
objects under the MMI sub-class
Vector m_Params[] : interesting Parameters with
whom message transfer is needed from the MMI sub-class
Vector m_DevPanels[] : interesting Control Panel
Frames of the devices in the MMI sub-class
Hashtable m_ParamGroup : table of groupname vs.
grouped Parameters / grouped Control Panels in the MMI
sub-class
DataBase m_DBUnder : the section of Database
containing dynamic parameter values under the MMI sub-
class
File m_ArchiveUnder : the archived data about the
MMI sub-class

5.3 Methods- root MMI class

 Listings of all interactions with underlying classes for each
kind of MMI were documented. Out of these, a greater
number could be designed as isomorphic across different
MMI classes, for both accelerators. These are filtered out as
the generic methods of the root ‘MMI class’.
 A tentative list of such methods for the root MMI class are
summarized below.
OpenGroup() : Show all params or control panels of the
selected group in an appropriate display interface
MakeValueSetting() : prepare a list of settings for a
named group (of parameters)
SetParam() : set a named group of parameters to the
specified values
MakeAlarmSetting() : prepare list of alarm-settings for a
named group (of parameters)
MakeParamGroup() : Populate Hashtables with data
obtained from opening level dialog boxes
MakeParamsList() : Make list of parameters taken from a
configuration file
ShowParamList() : Show names of all parameters and
control panels of this MMI in a selection dialog box
MakeGraphSetting() : prepare graph settings for a
group of parameters
AckAlarm() : acknowledge the alarm and reset
MakeGraph() : plot graph for group of parameters

AckAlarm() : acknowledge the alarm and reset
MakeGraph() : plot graph for group of parameters
SetToArchive () : set parameters in a group to pre-
specified values (obtained from archive)

6 Vertical transactions in an example sub-class

 A Sub-sytem MMI can be derived as extension of the root
MMI class. Each of these, additionally, may have unique
attributes and higher level methods. ‘Phasing’ in the PF
LINAC and ‘AutoTrim’ in the VEC are such examples in
respective MMI_RF. An example below sketches the
details of such a MMI sub-class.

6.1 Subclass MMI_RF

 This sub-class has all attributes and methods of a root
MMI, in addition to some unique attributes and higher
level methods specific to RF only.
Additional Member Methods
RfPhaseAdjustSystematic() : adjust RF phase at one or
multiple points, keeping other parameters of RF
optimised (automatically)
RefPhaseAdjustSystematic() : adjust Ref. phase at one
or multiple points keeping other parameters of RF
optimised (automatically)
IsolatorOperate() : on/off the isolator of the ‘IPhiA’
AttenuatorAdjust() : adjust the attenuator of the ‘IPhiA’
Stabilise() : enter a correction loop for optimising Dee-
voltage, harmonic content etc. for a specified RF setting
FrequencyAdjustSystematic() : slide frquency up/down,
keeping all other associated parameters of the RF
optimised.
AccVoltageAdjustSystematic() : slide accelerating
voltage up/down, simultaneously keeping other associated
parameters of RF optimised
TuneToHarmonic() : tune resonator to a
specified

harmonic frequency
 Through its Device_Rf object, or through the control
Database object, the MMI_Rf object can exchange
messages with the hardware and other entities of the
accelerator.

6.2 Sub-class Device_RF

Member Attributes
Auxiliary[] : m_MasterSource, m_PreAmplifier[],
m_Amplifier[], m_Klystron[], m_IPhiAController[],
 m_RefPhaseShifter, m_Trimmer etc.
Services[] : m_PowerSupply, m_Coolant-Supply etc.
Parameters [] : all measurable and controllable entities

Member Methods
Operate() : to operate on/off control
Regulate() : to operate continuous control
Measure() : to measure values of parameters

7 Implementation

 The codes for the class declarations and definitions for the
root MMI class have been done in Java, to benefit from its
platform independence and network package. The starting
codes for the prototype were developed with Vis. J++ under
Vis. Studio 97 on Win95. A set of primitive GUI
components have been utilised to prepare simplistic
operation screens (fig. 2). With the availibility of more
readily usable tools, GUI components specially suitable for
an accelerator operation console, will be applied.
 Implementation of higher level functions, in accelerator
controls, is a continuous process. Because of a clear class-
definition, extendibility[1] involves adding up new
methods to a derived MMI, as and when developed.

Reference

[1] N.Kanaya, NIM in Phys. Res. A352 (1994) 499

 Fig. 2 A Simplistic Test Screen

