
A Control System Based on WWW Technologies

B. Jeram, M. Plesko, R. Sabjan, M. Smolej, G. Tkacik
J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

e-mail: bogdan.jeram@ijs.si

Abstract

 Once used only in state-of-the-art accelerator and large
experimental physics control systems, distributed
computing has become part of our everyday life. In recent
years we have witnessed an explosion of WWW
applications and development tools. Therefore it makes
sense to fully exploit the existing WWW-technologies
provided conveniently by the computer industry as off-the-
shelf products.
 The control system of ANKA, a 2.5 GeV synchrotron
radiation light source being built in Karlsruhe, Germany,
uses WWW for both the graphical user interface and data
transmission. All operator control is performed through a
Web-browser with Java applets. Documentation and help
are obtained as conventional html text, including JPEG
images, Postscript documents, etc. An authentication
system allows applets, which can only read data from the
control system, to run on any Internet host in the world.
Access to databases is possible through application/data
servers in a three-tier architecture. Communication
between applets and control system data servers is done
through CORBA, RMI or bare sockets, if speed is the
primary concern.
 This paper presents a running prototype, which includes
applets ranging from those responsible for control of single
elements such as power supplies to those that perform
complex actions such as monitoring and logging. Extensive
use of Java features such as multithreading, object
serialization, networking etc. is employed to access fully
asynchronous and distributed objects. Results of the
prototype include an evaluation of several Java developing
tools for PCs (J++, Visual Cafe and SuperCede) and
benchmarks which clearly indicate that the interpreted
nature of Java is not a problem, as computing power is not
such an important issue in accelerator control.

1 Introduction

 We want to make a control system that will be as
homogeneous as possible from the operatorí s point of
view. The control system is designed to use existing
intranet/internet infrastructure and web technologies such
as HTML/HTTP, web browsers, web servers and
ObjectWeb with Java and CORBA/IIOP. This decision
was made because nowadays a large proportion of people
are familiar with web browsers and because the WWW
standards provide equal user interface to all information
regardless of its type.
 Every operator’s interaction with control system will go
through web browser:
• control GUI (Java / CORBA)

• logbook forms (Java / JavaScript / CGI)
• help, documentation (HTML)
• notification (e-mail)
 The core of the control system is based on Java – the de-
facto Internet programming language – and distributed
objects implemented according to CORBA specification -
the combination known as ObjectWeb [1].
 The architecture of CS is based on the Standard model.
Essentially the same thing is called a three-tier
architecture in the world of databases:
1. visualization layer consisting of control GUI
2. process control layer consisting of accelerator objects
3. fieldbus layer consisting of devices and databases tier,

respectively
 In the case of ANKA control system the first tier (where
clients run) can be any platform computer platform
(Windows 95/NT, UNIX, etc.) attached to the
Internet/Intranet capable of running Java. Consequently,
the decision about the platform can be postponed to the last
moment. Servers on the second layer are running on PCs
under Windows NT 4.0 operating system. For the field bus
LonWorks [2] from Echelon is used.

2 Client: Java applets running within a web browser

 In order to be platform independent clients are
applications or applets written in Java. The following
description which refers to applets is also valid for Java
application. We have chosen Java because it is a modern
object oriented programming language, it has well defined
data types and API (Application Programming Interface), it
allows easy use of graphic widgets, threads and other
system tools without having to know the specifics of a
given platform. Unfortunately, Java is also an interpreted
language, so it is a little slower than compiled languages
like C++, but we found out that by using JIT (Just-In-
Time) compilers it is fast enough for our needs.
Nonetheless, if the need for faster execution arises, several
native code compilers can be obtained from the market
(see table 3). On the other hand, the Java Virtual machine
(JVM) consumes a lot of resources: CPU and memory.
Hence only a limited number of clients can run
simultaneously on one computer, which has to be taken
into account when designing the control system.
 We mainly benefit from the following Java
characteristics:
• client applets can be downloaded from a web server

and run in any web browser on any computer
worldwide

• we do not need dedicated computers for running
control clients

• it is not necessary to install clients on computers from

which we plan to have control; all we need is a
computer attached to Internet/Intranet running a web
browser of any sort or even only an appletviewer.

 For this reason we need one or more dedicated computers
to run the web server and from where all clients,
documentation and help files in HTML format can be
downloaded. We can put Java client code in JAR (Java
ARchive) files to make download faster. In this way we
circumvent problems with installing and removing
different versions of clients. New clients can be added on
the fly to the control system. However, clients can also run
as a JAVA stand-alone application, so even a web browser
is not a necessity, if the Java virtual machine is avilable.

 3 Communication: CORBA/IIOP

 There are several possible ways of communicating
between distributed programs including RPC and sockets.
If we try to follow the lead of distributed object paradigm,
we have several options to choose from:
• CORBA(Component Object Request Broker

Architecture) [3]
• Microsoft’s DCOM (Distributed Component Object

Model) [4]
• Sun’s RMI (Remote Method Invocation) [5]
• Objectspace’s Voyager remote agent technologies [6]
 DCOM exists only on Windows platform (Windows NT),
Sun’s RMI is a part of standard Java and allows only Java
to Java communication and Voyager is still in
development. Apart from those reasons we also took into
account the platform and language independence of
CORBA, and therefor we have chosen it as our preferred
solution. We are considering using Voyager in the future,
to benefit from other features like agents, remote Java
Beans, multi-casting, one-way non-blocking
communications, etc.
 Currently, we are using Visigenic’s CORBA also known
as VisiBroker. We chose VisiBroker because it was one of
the first CORBA implementation for Java, because its
IDL-to-Java mapping will probably be standardized by
OMG and because many well-known vendors (like
Netscape and Oracle) use it. VisiBroker also supports IIOP
(Internet Interoperable ORB Protocol) which allows
communication between different CORBA
implementations (in principle clients can thus participate in
communication with CORBA servers of any
implementation). Our comparison of VisiBroker and RMI
revealed that RMI is slower. We measured binding,
rebinding and remote call times on two 133 MHz Pentium
machines under Windows NT 4.0 (see table 1).

 Table 1: RMI and VisiBroker Comparison

 RMI VisiBroker
 Java to Java

 First bind 70ms 24ms

 Rebind 18ms 70ms (?)
 Remote redraw
fillCircle

 5.8 – 6.3ms 4.0 – 4.4ms

 Ping [7] 5.5ms 3.6ms

 Our clients use VisiBroker’s ORB (Object Request
Broker), which allows communication with remote objects
on servers (on second-tier) using CORBA specification.
The ORB class library, consisting of approximately 2Mb
of code, is included with Netscape (Communicator version
4.0 or latter) so there is no need to download them. In our
case, however, the prototype uses v3.0 release of
Visibroker instead of v2.5 included with the
Communicatior, and the libraries have to be downloaded
anyway due to compatibility problems.
 Since only a tiny layer of the client encapsulates all the
communication details with the server, it can easily be
rewritten should we want to use a different communication
protocol instead of CORBA, without modification to the
rest of the client code. In that way that we can replace the
VisiBroker’s ORB with any other ORB or even with
entirely different architecture, like Sun’s RMI, Microsoft’s
DCOM or pure sockets.
 Device servers implemented along the guidelines of the
TACO [8] system constitute the other side of data
exchange. By implementing CORBA, TACO can export
CORBA objects to the network. The need for speed and
the necessity to communicates with external drivers require
the servers to be written in C++. In the future, when we
find appropriate Java development tools, we are planing to
write device servers in Java – using JNI (Java Native
Interface) and a native code compiler. The result will be
only one platform and one development tool, which will
greatly simplify the maintenance involved.
 Device servers export objects to web using CORBA from
VisiBroker (through its ORB) on one side and on the other
communicate with tier three: devices attached to a fieldbus
and DBMS (Data Base Management System).
 The communication between clients and devices is
completely asynchronous. The server’s response to client
requests are made via callbacks. In that way client acts like
a server and server acts like a client. There is also a
possibility of using “repeated callbacks”. The idea is that
clients are able to register with servers about which data
they require and how frequently it has to be obtained.
 The server is independent of the underlying fieldbus. And
our Web-based concept can be also used with other control
systems such as EPICS, etc.

 4 Security / authentication

 4.1 Java security problems

 Java client applications can access remote objects directly
without any interference from device servers, but applets
cannot because of web browser security restrictions placed
on Java applets. This, the so called Java sandbox security,
prevents an applet from making network connections
except to the host from which the applet itself originated,
and also prevents the applet from accepting any incoming
connections. In our case this means that we can
communicate only with the device server running on the
computer where the web server runs, which is a great
limitation for the control system. One solution of these
problems is to digitally sign applets, but then they will run

without restrictions only on computers, which can
authenticate the applet digital signature. Another
alternative would be to use some kind of gateway between
applets and remote objects servers. Visibroker offers such
a gateway named Gatekeeper. In the latest version (3.0) of
Visibroker callbacks are also supported. With Gatekeeper
every applet can access a device server irrespective of
where they run. Secondly, the problems with firewalls can
be circumvented on both client and server side. And finally
the Gatekeeper can be used as a web server.

 4.2 Client authentication

 When discussing the authentication issues of WWW
environments, one usually thinks of the applet. Our case is
different. We must not allow all clients to have control
privilege of the machine. Therefore we have to provide an
authentication mechanism which will grant read access to
all clients, and restrict full access (reading and setting) to
but a few applets. We plan to export objects through two
different interfaces (IDLs): restricted and non-restricted.
The restricted interface exports only “read” methods that
can be invoked from everywhere – worldwide, while the
non-restricted exports all (“read” and “set”) methods,
which in turn can only be invoked from the computers in
the control room. To export the same object through two or
more different interfaces we can use the CORBA tie-
mechanism. Tie-mechanism using C++ template enables us
to export already implemented objects onto the net.
 Authentication of clients will be carried out on the basis
of client IP host address check and/or authentication data
that are generated by client. We can authenticate client on
two levels:
• bind level: client is authenticated only when it tries to

bind to the CORBA server.
• request level: for every client request the server has to

authenticate the client.
 Authentication on a request level can slightly slow down
the server response time.
 We can enforce the authentication by using CORBA
interceptors a specified by OMG or by using VisiBroker’s
feature of handling ORB communication events.
 We implement the authentication of client’s IP address, in
the bind interceptor or in the bind event handler. That’s
allowing clients from everywhere to bind using the
restricted interface and only clients from control room to
bind using the non-restricted interface.

 5 Database access

 The main idea of three-tier architecture is that clients
don’t access the database directly but through CORBA
server.
 Our design of the control system involves having three
databases:
• static database that stores configuration parameters like

names, constants, calibration coefficients, attributes,
alarm levels, fieldbus addresses, etc.

• snap-shot data base that stores the state (i.e. all
settings) of machine

• historic data base that logs data over long periods of

time
 We are investigating two options for databases:

• relation database RDBMS (Relation Data Base
Management System)

• object oriented database OODBMS (Object-Oriented
Database Management System)

 We are porting the TACO database API from UNIX to
Windows NT 4.0. The first version will use a hash table
based database. Our control system is fully object-oriented
so we will evaluate the option of using an OODBMS to
ease our work of storing data. OODBMSs are ideal for
storing complex object hierarchy. We are currently
examining and studying POET OODBMS.
 We have tested and compared the following database
implementations: simple hashed database, object oriented
database (POET) and relational database (InterBase). Tests
were performed on a Pentium 100MHz with 32Mb of
RAM under Windows 95. We measured the basic database
operations that are common to all tested databases: insert,
read and delete. Each measurement involved 10.000 simple
data objects which contained, on the average, 70 bytes of
data. The results (see table 2) indicate that POET is
relatively slow. The shortcomming of the analysis is that
we have made tests with a very simple data model which
can be represented with only one table in relational and one
object in object oriented database. We expect POET would
perform better when dealing with complex object hierarchy
present in thecontrol system environment.

Table 2: Database comparison between hashed, relational
and OO database

Hashed
DB

OODBMS
(POET)

RDBMS
(InterBase)

Insert 21,09s 108,63 38,77
Read 23,45s 29,78 14,39
Delete 27,02 117,88 28,13

6 The prototype

 The demonstration of already working prototype can be
seen on-line on URL: http://kgb.ijs.si, which includes on-
line documentation.
 Clients-Java applets can be run even in any Java 1.1-
enabled web browser. We tested our clients with popular
web browsers on UNIX, Windows 95/NT and Macintosh
environments: Netscape Navigator 3.x and Communicator
4.x and Microsoft Internet Explorer 3.x and 4.x. Our
CORBA device servers run on a PC under Windows NT
4.0. For a web server we use Microsoft IIS (Internet
Information Server) which is included in Windows NT 4.0,
but others could well have been used instead.
 We developed Java applets based on JDK 1.1.x using
Symantec Cafe 1.5 and Visual Cafe 1.1e but also tested
other Java development tools: Asymetrix SuperCede, IBM
Visual age for Java, Borland JBuilder and Microsoft Visual
J++. We have made a comparison considering the features
we need the most (see table 3).
 In our prototype there are several client applets and
several servers: power supply, ramping, vacuum valve,
vacuum pump and vacuum gauge. For simplicity we made

only one server available for tests over the Internet: the
power supply server, together with two clients: PSPanel
and Trend.
 PSPanel client is a front-end for controlling and
monitoring a power supply. With it we can set current, turn
it on/off and reset the power supply. It monitors power
supply’s ADC and DAC currents, status and alarms. The
value of ADC is shown using a gauge widget, which we
downloaded freely from the Internet [9]. Values for status,
ADC and DAC are sent to the client using repeated
callback mechanism with frequency of 1Hz.
 Trend is a client for logging currents of one or more
power supplies. We plot current using sophisticated
widget, which we also downloaded from Internet [10].
With the Trend client we can log current with acquisition
time from 20ms to 10s. However, the max rate of 20ms can
be achieved only on the local Intranet. We can change
speed of drawing the current curve, and it is possible to
choose which power supply and which current to log: DAC
or ADC.
 We measured that writing one set point needs between 22
and 40ms. If we compare this result with the result for Java
- CORBA communication – approx. 4ms (see table 1) we
can find that most time is spent on fieldbus
communication and for this reason Java is fast enough for
our control system.

7 Conclusion

 The analysis of the subject and the working prototype
clearly demonstrate that the idea of WWW-based control
system is a good one and ripe for deployment. More
important, though, is the global perspective: Java/CORBA
technologies are (or at least will be) widely supported in
the near future, and the investment in them seems
worthwhile. Important aspects of communication, such as
security, database access, transparent method invocations

etc. are already precisely defined by the existing standards
and implementations are available from many software
vendors; the only remaining task is to pick the correct
software components and integrate them in a reliable,
reusable and easy-to-maintain manner.

Acknowledgments

 We thank the ANKA-team at the Forschungszentrum
Karlsruhe and D. Einfeld and H. Schieler in particular for
creating a pleasant atmosphere of collaboration and for
their hospitality during our visits. Thanks a lot to the
iOsupport – team for technical supporting in using
VisiBroker. Many important questions were raised and
suggestion given from the colleagues in the TACO
collaboration, notably A. Goetz, S. Hunt and W.D. Klotz.
We thank them all.

References

[1] R. Orfali, J. Edvards, CORBA, Java and the
ObjectWeb, BYTE vol. 22 no.10 (1997) 95.

[2] B. Jeram, G. Mavric, M. Plesko, M. Smolej,
Experience with LonWorks as a Fieldbus for the
Light Source ANKA, this conference.

[3] http://www.omg.org/
[4] http://www.microsoft.com/activex/dcom-f.htm
[5] http://www.javasoft.com/products/jdk/rmi/

index.html
[6] http://www.voyager.com
[7] R. Orfali, D. Harkey, Client/Server Programming

With Java and Corba.
[8] J. Mayer, Redesigning a Radio Frequency Control

System with TACO, this conference.
[9] http://www.bonsai.com/java/gaugedemo
[10] http://isd.cme.nist.gov/staff/shackleford/diagapplet/

plotter

Table 3: A short preview on features of different Java development tools

Symantec
Café 1.5

Symantec
Visual Cafe 1.1

Asymetrix
SuperCede

IBM
Visual Age
for Java 1.0

Microsoft
Visual J++

1.1

Borland
JBuilder

1.0
Two-way

RAD
no yes No yes no yes

JavaBeans
Supporting

no no* no* yes no yes

JavaBeans
Creating

no no no* yes no yes

CORBA
Support

no no no yes no yes

Native code
compiler

no no* yes no no yes

Support for
ActiveX

no no yes no yes no

Byte code
Compiler

JIT JIT flash JIT

* will be available in next versions

