
The Implementation of an OO Control System API with CORBA

S. Hunt1, B. Jeram2, M. Plesko, C. Watson3,
1 Paul Scherrer Institute, Villigen, Switzerland

2
 J. Stefan Institute, Ljubljana, Slovenia

3Thomas Jefferson National Accelerator Laboratory, Newport News, USA

Abstract

The trend in software development for accelerator
control systems, for both the client and server layers, is
toward object oriented programming. Commercial
developments such as CORBA are now providing object
oriented environments for distributed systems which have
significant advantages over older procedural libraries.

Object oriented client-server systems using C++ to C++,
Java to C++ and Java to Java communications over
CORBA have been tested and compared to Java's remote
method invocation (RMI) mechanism. Benchmark
performance measurements show that CORBA can be of
comparable performance to many RPC or raw TCP
systems.

An object orient application programming interface
(API) has been implemented in a prototype of the control
system for ANKA, a 2.5 GeV synchrotron radiation light
source being built in Karlsruhe, Germany. This system is
based on TACO, a control system architecture with object
oriented servers developed at the ESRF and now used in a
wider collaboration. Use was made of CORBA and its IDL
to define first class objects both on the client and server
side. By using CORBA remote methods in both directions,
asynchronous processing of events and call-backs are used
to provide efficient use of network resources. Static data
such as calibration and other data that are stored in
databases are accessed directly through object serialization
or synchronous client-server methods. Each object that is
exported by CORBA has specified methods for its atomic
actions, such as get(), set(), getStatus(), on(), off(), etc.
Alarm objects are always asynchronously sent to the alarm
handler application.

1. Background

ANKA and the SLS are two examples of the new
generation of compact, high performance synchrotron light
sources that are at present under development. The key
parameters for the control system for these and other
modern machines are Performance, Functionality, and
Cost. Performance is needed to provide responsiveness to
the operator, such that no delay is noticed between the
setting and readback through the control system of
accelerator parameters, and needed for programs that must
manipulate a large number of parameters (acquire beam
orbit at each step of a tuning algorithm). Functionality
includes the provision of now 'standard' features such as
archiving, synoptic displays and alarm handling.  Cost is
becoming an even more  important factor in determining

the technology to use for the implementation of a  control
system, and can involve both the cost of control system
hardware as well as the cost of developing custom
software.  To address these concerns, the ANKA control
system is based on TACO[1], an object-oriented control
system tool-kit that was developed at ESRF. TACO has
been upgraded to offer an object oriented API at the client
level, as well as at the real-time server level, and is
migrating from RPC to CORBA.

2. The evolution of accelerator control systems

The evolution of accelerator control systems has
occurred in clearly identifiable phases. From  the
mainframe era, the Mini-computer (VAX) era, the
Workstation era, to the present PC era, some common
trends can be discerned: from home-built to commercial
tools and standards;  from being 'computer scientists' at the
leading  edge of technology to becoming systems
integrators;  from expensive (specialized) to cheap, mass
market components; and from working in isolation to
working in collaboration.

Developers of accelerator control systems have often
been slow to admit  that their requirements might be  met
by standard industrial products, services, and protocols.
For example, from building network hardware, one started
to use Ethernet, but  with home-built protocols.  Slowly the
use of UDP and TCP became common. Later still, higher
level protocols such as  RPC have become widely used in
accelerators.  And now, distributed component technology,
such as DCOM and CORBA have appeared in control
systems.  Often in these cases, there is a  trade-off  between
functionality and performance.  But the trend is clear: as
the performance of  commercial products improves, and the
cost of providing the desired functionality ë in house’
increases, relying on home built systems becomes even less
attractive.

3. What CORBA provides

In common with RPC, CORBA[2] provides the ability to
build distributed applications, running on heterogeneous
systems, without knowledge of the underlying network. By
linking with 'stub' procedures that have the same signature
as the procedures on the remote system, the programmer
can be made (almost) unaware that some of his program is
executing on a remote machine. However CORBA goes
much further than RPC; it defines an object-oriented, rather
than a procedural interface. It also defines a very rich
language (IDL) for describing the interface and behavior of



remote objects.  CORBA also allows late binding, the
discovery of objects at run-time, allowing CORBA objects
to be self describing. CORBA objects can be serialized
(archived) to and from a variety of persistent storage
devices, including files and databases. CORBA defines
many of the services needed in building distributed systems
such as accelerator control systems. CORBA services
include PERSISTENCE, CONCURENCY, NAMING,
EVENTS, and SECURITY.

4. Arguments made against CORBA

4.1 CORBA is slow?

CORBA is a standard for implementing distributed
systems, it is not a product. The CORBA standards are
defined by the Object Management Group (OMG), an
industry consortium including the leading computer
companies. As such, CORBA is not inherently slow or fast,
and one has to examine implementations of the standard.
There exists a large spread in performance between
different CORBA implementations. This is partly due to
products focusing on different target markets. One of the
markets for CORBA,  embedded systems, clearly identifies
real-time performance as a goal. Although some features of
CORBA, such as dynamic invocation interface, may cause
a performance penalty,  one is not forced to use those
features where they are inappropriate. Tests using one
CORBA implementation (DOME[5]) on low-end personal
computers, has shown  sub-millisecond response time for
synchronous calls.

4.2 CORBA  object resolution takes too long ?

CORBA defines a naming service, but it also supports
third party naming services.  As in existing control system
architectures, in CORBA one must choose between a
centralized naming service, a totally distributed naming
service, or a hybrid offering redundancy but without the
overhead of total distribution. Note that a CORBA
accelerator object can represent a device, such as a power
supply or beam position monitor, which can include many
low-level inputs and outputs. Therefore a CORBA system
has to bind to many fewer named items than a system that
deals with low-level channels.

In one test, CORBA has been shown to resolve
references to 1,000 objects within 4 ms per object, which
may be considered an acceptable overhead when starting an
application program. If this is too slow (and is not brought
down fast enough by evolution of hardware and software),
there is still the possibility of a custom naming service and
batching of name resolution (a technique used in a number
of control systems).

4.3 CORBA is too complex ?

Many users of control systems find the change from a
procedural to an object oriented program paradigm
difficult.  Some of the reports that CORBA is complex
result from this general difficulty, and do not represent a
problem with CORBA itself. However, the language

bindings, particularly those that are non-standard, do seem
unnecessarily obtuse. One reasonable approach to handle
this is to hide the CORBA related calls from the end-user
in a well-designed control system API. CDEV is one
framework which could easily encapsulate CORBA calls
(especially the difficult dynamic invocation calls) within an
easier to use API.

4.4 CORBA does not run on real-time systems ?

Vendors offer CORBA on a number of real-time
platforms, including OS-9, VxWorks, and Psos. CORBA
extensions for real-time have started the standardization
process. Some of the issues for CORBA on embedded real-
time systems, such as  the suitability of dynamic
invocation, are being studied.

4.5 CORBA has no asynchronous calls and call-backs ?

OMG has not defined a standardized way to implement
call-backs, or asynchronous calls. However this does not
mean that these features are not available. As often is the
case, some vendors are ahead of the standardization
process, and some behind it. Some CORBA vendors offer
non-blocking (asynchronous) calls and callbacks as a
proprietary extension, while users are always free to
implement callbacks themselves.

4.6 CORBA does not scale to massive systems ?

OMG designed CORBA to encompass global networks,
with thousands of servers and millions of objects. Although
many existing implementations do not support the services,
such as efficient name resolution, to support this, there are
no inherent bottlenecks to global CORBA networks.
Systems such as accelerators, with perhaps hundreds of
Orbs and tens of thousands of objects can use existing
CORBA implementations. As CORBA does not enforce a
single naming service, a 'real-time' naming service, perhaps
one already used for accelerator control, might be
appropriate for these larger systems.

4.7 CORBA is not supported by Microsoft ?

DCOM, the distributed component architecture from
Microsoft is a very strong contender for use in accelerator
control systems. It may be that DCOM becomes the de-
facto standard, with CORBA occupying only a niche
market. If one decides to use only Windows as an operating
system, DCOM might be the best choice. However DCOM
is not yet as mature as CORBA, it is lacking many of the
CORBA services, and many developers are not willing to
run only Windows. If DCOM does come to dominate, it
might become necessary to port existing CORBA
applications.  Given the architectural similarities, this
should not be too daunting a task. Alternatively it might be
better to rely on CORBA-DCOM inter-working products,
which are becoming available.

4.8  RMI will replace CORBA ?

Java Remote Method Invocation protocol (RMI)



provides a more 'natural' environment for distributed
applications written using only Java. However, Java does
not yet seem suitable for embedding in real-time systems.
This is mainly due to the much discussed issues involved in
garbage collection. At the moment there are examples Java
clients talking to servers on real time systems written in C
or C++, in which case one cannot use RMI.

4.9 CORBA is not easy to integrate with existing systems?

Many laboratories have a large installed base of software
which is not CORBA based, and must be preserved. Two
approaches allow integration with CORBA.  First, a
gateway could be provided between the CORBA and non-
CORBA parts of the system. Second, an object oriented
framework such as CDEV[3] could be used to integrate the
systems at a higher, wrapper layer.

5. CORBA performance

5.1 Visigenic performance using Java

Visigenic offers the most  common CORBA ORB - not
surprisingly as every new copy of Netscape, said to be the
most popular computer application program ever written,
ships with a copy of the Visigenic Orb. Visigenic offers
Orbs with a native C++ binding for a number of systems,
including popular UNIX platforms and Windows.
Visigenic also offers an ORB with a Java binding, itself
written fully in Java, making it suitable for any platform
offering a Java Virtual Machine.

Table 1. Performance comparison of RMI and CORBA.
RMI CORBA

(Visigenic)
first bind 70 ms 24 ms
remote redraw
fillCircle

5.8 - 6.3 ms 4.0 - 4.4 ms

Visigenic however has a relatively high cost for a
development licence, and does not run on real-time
platforms.

5.2 DOME performance using C++

DOME, from Object Oriented Technologies, is a real-
time embeddable ORB. It is available for a number of
platforms, including NT, Win95, Linux, Solaris, HPUX,
OS-9, and Psos. DOME supports callbacks and
asynchronous calls, and  has a  small footprint, but a
CORBA 2.0 compliant version is presently only available
under beta release. DOME achieves performance at the
cost of some incompatibilities with other Orbs, but this is
configurable in the new version, allowing either IIOP or
proprietary transport. It is even possible to bypass byte
order conversion when systems are compatible, which
further increases performance.

Table 2. Performance of DOME
Num. Of
Objects

Average
Time for

Bind  (ms)

 Time for

1st Object
access  (ms)

Time for
last object

access (ms)

1 1.01 0.85 0.85
10 1.40 0.86 0.88
100 1.54 0.88 1.14
1000 2.75 0.89 3.40
10000 14.32 0.88 32.71

  
These results were achieved between two 133 MHz

Pentium PCs running Linux 2.0. As can be seen, DOME
does not behave as well when dealing with very large
numbers of objects on one server. This is because it uses a
linear search algorithm to obtain the object reference. OOT
has announced that the new release of Dome has addressed
this problem. Dome licenses are free for educational users,
and they also offer free licensing for personal use on Linux.

5.3 Other ORBS

A number of other Orbs are worth considering. OMI-
Broker is also very fast, is free for non-commercial use,
and source code is available. OmniORB is a fully threaded
Orb that is available under GNU licensing.

6. Features of a CORBA OO - API

In order for common accelerator applications to be used
at more than one laboratory,  a common API and basic
accelerator class hierarchy are needed. Devices such as
Power Supply (or Magnet), Position Monitor, and Vacuum
Gauge have to use a minimum set of common attributes.
Common attributes include: access control; engineering
units; device description; alarm limits; and time-stamp.

6.1  Wide or Narrow API

Accelerator Control system API's have traditionally
employed a 'narrow' API - defining a few well-known calls,
which take device or channel name and value or command
as arguments. Such calls typically are get(), set(), etc.
• get(Booster_PS01,Status,result);

 Object oriented languages more typically use a 'wide'
API - with each class of devices having its methods, and
using an instance of its class per device.
• result = BoosterPS01.Status;

 Narrow interfaces are preferable when writing general
purpose applications such as save/restore or a synoptic
display program.  Wide interfaces are more natural for
accelerator physics applications which ì know” what
attributes they will be dealing with. A control system using
CORBA could be implemented with either approach.
ANKA has chosen a wide interface, within a defined
accelerator class hierarchy.

 6.2 Databases and serialization

 
 
 



 Default device properties (such as engineering unit
conversions), Operational parameters (such as power
supply current), and archive data, can be kept local to the
server or in a database. CORBA  serialization can make the
type of storage used transparent to the programmer.

 6.3 Organization of Classes

 Classes should be independent of the language used (for
instance, Java). Therefore there should be no reference to
the visualization or GUI for a given object or attribute.
Also there is a clear difference between accelerator control
objects (power supply, insertion device) and physics
objects (orbit). These differences should result in two class
hierarchies that  share a common root class.

 6.4 Root class methods

 Some root class methods would be defined in the root
class, providing default behavior. Some methods would be
virtual, forcing each device class to implement that
functionality. All devices should support callbacks and
monitors (send data only when changes have exceeded
limits). Methods should also be defined to get a list of all
devices of a specific type. Locks (mutexes) should be
available to the programmer to ensure exclusive write
access to resources.

 6.5 Standard Accelerator Objects

 Standard classes should be defined for common
accelerator objects. These should include:

 
•  Power Supply
•  RF
•  Vacuum-Pump
•  Valve
•  Kicker
•  Septum
•  Position monitor
•  Profile monitor
•  Current monitor

6.6 Introspection

In order to be able to write generic applications, there
should be a method to find all attributes of an object. This
could be either part of the root class,  or use CORBA
dynamic binding, or a set of helper objects as is done in
CDEV.

6.7 Aggregation and Groups of Devices

Devices of the same or even different classes should be

able  to be grouped together in logical arrangements (for
example SR group, or RF group, or orbit correction group).
Methods, including serialization, should operate on groups
as well as on individual devices. Another type of
aggregation used in CDEV allows a logical device to span
multiple servers, for example to have dynamic data in a
real-time front end and static data in a commercial
database.  The exact location of a piece of data is hidden
from the user, easing use and maintainability.

6.8 Object Naming

Although a device naming convention is outside the
scope of this paper, the OO API should not put unnecessary
restrictions on the device naming scheme chosen. Many
existing accelerator naming conventions are a mixture of
location and type (e.g. SR/PS/Q1 - SR and 1 refer to the
location, PS and Q refer to the type of object). Software
sharing arguments (and the impossibility of having an
international naming convention) implies that such
information should be held as an object attribute, or
retrieved from a database.

7. Conclusions

CORBA is a rapidly maturing technology, that can
provide many of the components needed for building
accelerator control  systems. However in many
laboratories, legacy considerations will delay the
introduction of component software technologies.
Furthermore, many applications are available for existing
API's such as Channel Access, CDEV, and the existing
TACO interface. CDEV in particular offers a strong object-
oriented environment in which to share software at the
application level, independent of the underlying control
system and able to integrate with CORBA and non-
CORBA API. It is hoped that these existing accelerator
software bus technologies, rather than try to compete with
commercial component software technologies, will migrate
in a controlled fashion to make use of the new
opportunities offered.

References

[1]Taco, http://www.esrf.fr/computing/cs/taco/taco.html

[2] CORBA: Architecture and specification, OMG, 1996.

[3] CDEV, http://www.jlab.org/cdev/

[4] Client Server programming with Java and CORBA, R.
Orfali. & D. Harkey, Wiley computer publishing.

[5] DOME, http://www.oot.co.uk


