
Xwin--A Graphical User Interface Developing Toolkit on Workstations
Ge Lei, Jijiu Zhao

Institute of High Energy Physics, Chinese Academy of Sciences
Beijing 100039, P. R. China

Abstract

Graphical User Interface is an essential part of
accelerator control applications. A software toolkit called
Xwin has been developed by the authors of this paper for
easily constructing GUI applications of accelerator control
systems. This paper mainly introduces the functions and
features of Xwin.

1. Introduction

X Window System and Motif are the most popular GUI
toolkits and de facto industry standards on workstations.
Most control applications of accelerators in the world were
developed based on X Window System and Motif.

X Window System is powerful but complicated. Motif
has many pre-defined widgets for constructing GUIs.
However, it lacks functions specially used for control
systems [1].

Since the research of experimental physics becomes
more and more dependent on computer aids, physicists
have to develop programs themselves to help their
research. For them it is rather difficult to learn and use the
functions of X Window System and Motif, especially with
so many parameters and attributes to be understood.

We developed a software package called Xwin to easily
create GUI applications especially for accelerator control
systems. Based on X Window System and OSF/Motif (Fig.
1), Xwin is a sharable library providing a set of functions
to construct graphical user interfaces.

Xwin on the whole provides a simple way toward GUI
programming. And many functions in it are powerful and
convenient to use even for the experienced programmers of
X Window System and Motif.

Operating System and Networking

X Window System

Motif

Xwin

Applications

other
libraries

Fig. 1. Relation between Xwin, X Window System and
Motif

2. The design of Xwin

First of all we designed a subset of GUI components.
Some of the widgets are just adopted from Motif, some are
inherited from Motif by adding special attributes, and some
are integrating several widgets of Motif to form a new
feature.

The widgets which can be created in Xwin are divided
into three levels, as shown in figure 2.
• Shells which envelope other widgets and communicate

with the GUI server. There are two kinds of shells – the
application shell that is independent from other shells,
and the transient dialog shell that is adhered to the top
of its parent.

• Containers which manage the components in them.
Xwin can create two kinds of containers, to treat the
geometrical parameters of its children as relative values
and absolute values separately.

• Simple and complex components, they are button, label,
separator, frame, menu bar, pulldown menu, popup
menu, canvas, axis plane, text area, list, knob, etc.

AppShell

Dialog
Shell

scrolled
window

form

label

button

frame

separator

canvas

axisplane

knob

shell
manager

component

text

menubar

pulldown
menu

popup
menu

option
menu

Fig. 2. Widgets and their levels in Xwin

Then we added what the physicists and control
application programmers asked for - displaying scientific
data in axis planes or in graphics, providing predefined
elements to be easily used to control physical processes, etc.
We ourselves faced the demand to improve the readability
of the applications, to help with maintenance or
development. We decided to construct a library to solve
these problems.

3. Functions of Xwin

Xwin provides all together 109 public functions and
several macros.

3.1 The structure of Xwin programs

• WnInit(char *title, int argc, char **argv,
XtAppContext *context) - to initialize the GUI
environment for the application. After calling this
function, the programmer can create windows, buttons,
menus, etc, to construct interfaces as needed and to set
event processing procedures. Then, using

• WnRealize(top_widget) - to generate the widgets and
to visualize them on the screen. It is a macro.

• WnMainLoop(context) - to start the loop for waiting
and handling events. It is a macro.

This is the main sequence of Xwin programming.

3.2 Creating widgets

For example, WnDialog is to create a dialog shell.
WnScroll is to create a scrolled window with the scroll bars
appearing automatically when needed. WnPulldownMenu
is to create a pull-down menu and the buttons on the menu,
to set accelerator keys for the buttons and to add callback
procedures. WnLabelP is to read a bitmap file and create a
label for that bitmap picture. WnKnob is to create a knob
for physical control.

3.3 Getting and setting attributes of widgets

For all widgets in Xwin, there are functions to set or get
the height, width, location, foreground and background
colors. Besides, for some special widgets, Xwin has special
functions to set and get attributes. For example, there are
functions to return or set the displayed string of a label.
There are functions to read strings from a file to a text-area
or write strings of a text-area to a file, etc. The current
value of a knob can be set and got. Programmers can also
set a widget to blink or stop the blinking.

The width and height of the screen can be visited, too.
There are functions to add activated-callback procedures
for buttons and destroyed-callback procedures for shells.

3.4 Man-machine interacting functions

We integrated some interacting procedures into single
functions. For example,

char *WnFileSelect(char *prompt).
This function pops up a file selection box, prompts the

user to view and select a file. Then waits for the user's
reaction. When the “OK” or “CANCEL” button is pressed,
the function is ended and the selected file name or NULL is
returned to the program. The programmer can specify the
prompting string through the parameter "prompt". In figure
3, the right part is a file selection box.

The functions WnGetStr, WnGetInt and WnGetFloat
allow the user to input a string, an integer or a floating
number respectively. WnConfirm prompts the user to
confirm requested operations.

Fig. 3. File-selection Box

3.5 Drawing graphics

Xwin provides functions to draw and fill graphical
elements such as a point, a line, an arc, an ellipse and a
rectangle, a curve, etc.

3.6 Creating axis plane and displaying data

Also Xwin provides functions to create axes to form a
coordinate plane and drawing mathematics functions and
other graphical elements in the coordinate plane.

The upper left part of figure 4 is an example; only three
functions are called to draw the data in the axis plane:

axis = WnAxisPlane(Widget parent, WnAxisData
axisdata);

WnReadFile(char *file-name, char *curve-data);
WnAxisCurves(Widget axis, char *curve-data);
The above three functions are used to create an axis

plane, to read data from a file, and to draw curves in the
axis plane respectively. WnAxis Data is a data structure
provided by Xwin to define an axis plane.

Fig. 4. View of a control panel

3.7 Common facilitating functions

Xwin integrates some commonly used procedures to
facilitate C/C++ programming, such as converting data,
visiting files, displaying pictures and photographs.

4. The features and techniques

Xwin is simple and practical. It provides an easy way to
create window, to draw graphics and to generate complete
man-machine interacting.

4.1 Simplifying drawing

X Window System and Motif are the basic environment
of Xwin, which includes three libraries altogether: X Lib,
Xt and Xm. Among the three libraries only X Lib has the
functions of drawing graphical elements. However, X Lib
is the lowest library of the three, and is also the most
complicated and tedious one to use. Programmers have to
query and set up many environment variables, and have to
use several data structures that are necessare in X Lib
drawing [2].

We designed a private data structure named
__WnDrawareaRecord, to record for every canvas some
key data, such as the graphical context and the pointer to
the screen buffer. This record is linked to an extendable
attribute of the drawing area widget of Xt Intrinsics. The
necessary and tedious drawing procedures of X Lib are
done inside every drawing function of Xwin. By this way,
the complicated drawing processes using X Window
System are transparent to the programmers using Xwin.

And the parameters of drawing functions are simpler than
those of X Lib, using only the target canvas and the
necessary geometric describing parameters.

For example, using Xwin to draw a line simply needs
WnLine(Widget w, int x1, int y1, int x2, int y2).

The parameter w is the canvas. (x1, y1) and (x2, y2) are
the coordinates of the starting and the terminal point of the
line respectively.

4.2 Handling expose event

Redrawing all the contents of a drawing area when the
expose event occurs is a fact that has to be faced and must
be handled by all programmers of X Window System and
Motif.

There are two basic methods to handle the expose event.
One is to record what has been drawn and to redraw them
when the expose event occurs. The other way is to provide
a buffer and make the copy of the drawing area. When the
expose event occurs, just copy the content of the buffer to
the screen. Through our experience we found that the first
method is slower than the second one, especially when
many graphical elements are to be drawn. So we adopted
the second method. The pointer to the buffer of the drawing
area widget is kept in a record data of the type
__WnDrawareaRecord. Private procedures are set to
handle expose event. Therefore the programmers using
Xwin need not know about expose event at all.

4.3 Integrating interactive functions

Some frequently used man-machine interacting
procedures were integrated into single functions in Xwin,
in order to not only simplify the GUI programming, but
also to improve the readability of programs.

After analyzing the secret and principles of the Xt
Intrinsics waiting event and dispatching event [3], we
decided to create the following functions to conveniently
complete the interactive processes: WnConfirm,
WnFileSelect, WnGetFloat, WnGetInt, WnGetString.

Besides, we have set some protocol atoms for the dialog
shells and added activated callback procedures for the
buttons in the dialog windows. These two methods are to
make sure that every interactive function can end itself and
return an effective result, to keep the whole program
running correctly no matter whether the dialog window is
exited normally or destroyed abnormally.

Fig 5. The outlook of Knob

4.4 Designing GUI elements for control

In accelerator control systems, some physical variables
such as voltage and current values are adjusted frequently [4]

[5]. We designed an integrated element called Knob, to help
to handle the process. The outlook of Knob is shown in
figure 5. A knob is the integration of a frame, a form, four

push buttons (to set maximum, minimum, step and exact
values), two arrow buttons and a scale.

We also provide functions for creating a Knob, for
setting and getting the current value which is presented and
controlled by the knob. A double precision floating number
is used to present the variable controlle by the knob.

4.5 Displaying pixmap

In order to generate pixmaps, the object-oriented
technique is used in the function WnGIF(char *file-name)
to process the graphical files in GIF format. A pixmap can
be used on the surface of a label or a button, to make the
applications lively.

4.6 Error checking

At the beginning of every function of Xwin the effective of
the received parameters is examined. Besides, in Xwin,
before the functions of X Window System and Motif are
called, the check on the effective of the key parameters is
made, too. These ensure as much as possible that the
programmers of Xwin get the information they can
understand if an error occurs, other than leaving the
problem to X11, Xt and Xm libraries.

5. Conclusion

To be simple and practical is the principle of Xwin. It
provides a whole concept to construct GUI applications,
simplifies graphical drawing and scientific data displaying,
integrates some commonly used man-machine interacting
procedures into single function calls, in a sense to improve
the readability of programs. It realized integrated elements
that are used very frequently in control applications,
provides functions to connect text-area and file reading and
writing. It can be used in C, C++ programming languages,
and can be called combined with the functions of X Lib, Xt
Intrinsics and Motif.

Xwin was first realized on Alpha workstation running
Digital UNIX. Then it was transplanted to DEC
workstation running VMS operating system. We have
developed several applications using Xwin. Figure3 is the
interface of a drawing facility and figure 4 demonstrates
the BEPC control panel.

6. Acknowledgment

We would like to thank the colleagues of Controls
Division of IHEP.

7. Reference

[1] OSF/Motif Programmer’s Guide, Digital Press
[2] X Window System, Digital Press
[3] X Window System Toolkit, Digital Press
[4] J.J. Zhao et al, New Man-Machine Interface at the

BEPC, ICALEPCS’95
[5] J.J. Zhao et al, Status of the BEPC Control System,

ICALEPCS’93

