
The Prototype of a VME-Based Front-End System for the T-C Factory
Control System

F. Zhang J. Zhao
Institute of High Energy Physics,Chinese Academy of Sciences

P.O.Box 918(10) Beijing 100039,China

Abstract

The VME-based prototype is aimed at researching some
basic technical matters in the front-end system of the T-C
factory control system. Hardware and software aspects of
the prototype system will be described in this paper. In
particular, we will discuss the embedded system generator:
vmexgen, network download, multiprocessor operation,
VMEbus address space, interrupt service routines(ISR),
I/O device driver and VMEexec Network Environment
(VNE). Finally, a VMEbus-based parallel processing
system will be discussed.

1 Introduction

The Beijing Tau-Charm Factory(BTCF) is a new
electron-positron collider project which has a luminosity
which is a hundred times higher than that of BEPC. Its
beam energy is 1.5 to 3 GeV. The BTCF will serve high
energy physical experiments. Its front-end system consists
of FECs(Front-End Computers), I/O devices and real-time
applications running on the FECs. The FECs connected
with Ethernet or VMEbus access the I/O devices via the
VMEbus or VMEbus-field bus interfaces. The basic
technical matters in the front-end system of the T-C factory
control system will be described in the following
paragraphs.

2 Structure of the prototype system

2.1 Hardware

In the prototype system shown in figure 1, a MVME187
host, two MVME162 targets and some I/O boards are
assembled in one VME chassis. Both, the MVME187 and
the MVME162 have on-board Ethernet interfaces. Because
they can be assigned to different logical chassis in the
VMEexec software package even though they locate in the
same chassis, the prototype system can support both,
VMEbus-based and network-based configurations.

2.2 Software

The software of the prototype consists of UNIX
SYSTEM V and the Motorola VMEexec software package
which is a real-time system development environment
based upon a host running on a VMEmodule-driven
SYSTEM V operating system. It provides a comprehensive
set of board support and an I/O driver package for
Motorola`s line of VME boards. The Application Program
Interface (API) of VMEexec is shown in figure 2.

hardware

Xlib

Real-time application

VMEexec system service I/O device driver

pSOS+

SVIDlib

Figure 2. The application program interface of VMEexec

3 The basic technical matters

3.1 vmexgen

Vmexgen is the process used to select and make
modifications to VMEexec configurations, define the
structure of the system, create VMEexec target kernels
based on the selected configurations. The kernels generated
by vmexgen will be the run-time environment of the
corresponding real-time application. Each of the following
technical aspects has its own vmexgen configuration.

3.2 Network download

Network download refers to VMEexec kernels and real-
time applications downloading from host to target over
Ethernet. The network downloads usually fall into two
general categories: active and passive.

VMEbus

MVME187
HOST

MVME162
target 2

MVME162
target 3

MVME512
I/O board

X
terminal

MVME712

UNIX
VMEexec pSOS+ pSOS+

Figure 1. Structure of the prototype system

In the case of active downloads, the targets initiate the
network download process after the targets’ reset or power-
up. With the network download information which is
predefined in the targets’ NVRAM, the on-board Ethernet
interface and the tftp function of the on-board ROM, the
targets download their real-time kernels and applications,
then start the real-time applications.

In the case of passive downloads, the targets boot from
the local ROM and start a network download assistance
process. With this process, the host command gload can be
used to download the corresponding real-time kernel and
application to the targets.

The network download assistance process can be
downloaded through the active way, or be written in
EPROM and inserted in the socket of the target.

If there is no Ethernet interface on a target, its kernel and
application can be indirectly downloaded with the assistant
of another target which stays in the same VME chassis and
has an Ethernet interface. It must be noted that only the
passive style can be used in this condition, because the
network download assistance process can provide the
indirect download service, but the tftp function can`t.

3.3 Multiprocessor operations

″Multiprocessor operations″ means that tasks that make
up an application can reside on several targets and still
exchange data and synchronize execution as if they were
running on a single processor. The pSOS+ defines a series
of global objects which can be reached or referenced from
any target in the system. The global object classes include
task, event, memory partition, message queue and
semaphore. Using global objects, pSOS+ provides a
mechanism of parallel processing based on
multiprocessors. For example:
• Multitask scheduling based on multiprocessors was

realized using a global task.
• Multitask synchronizing based on multiprocessors

was realized using a global event and/or semaphore.
• Exchanging data between tasks runing on different

processors was realized using a global message queue.
• Dual-ported memory was realized in VMEbus-based

systems using global memory partitions which is only
meaningful in tightly(i.e. , memory) coupled systems
and global message queues.

Because VMEexec provides a software layer hiding the

communication media features, the implementation of
multiprocessor operations based on VME and Ethernet
have the same synopsis.

3.4 VMEbus address space, Interrupt Service Routines
 (ISR) and I/O device driver

Because the VMEbus has address lines A00-A31, it’s
address space ranges is from $0 to $FFFFFFFF. In
VMEbus-based multiprocessing systems, each board, as a
VMEbus slave, occupies a section of the VMEbus address
space. The board with the master functional module can
access the VMEbus address space[5]. The VMEbus
address space of the prototype system is shown in figure 3.
The host`s VMEbus address space access is forbidden.
Because each MVME162 can be the VMEbus master
and/or slave, their 4MB shared DRAMs are accessible for
each other, which is the hardware environment of global
memory partition operations. MVME512 is a VMEbus
slave which occupies 1KB section of the VMEbus address
space. Targets can control actions of the MVME512 and
read the A/D data by accessing the 1KB VMEbus address
space.

Interrupt Service Routines(ISR) are critical to any real-
time system. Two interrupts are generated and handled in
the prototype system. One is the VMEchip2 Tick Time 1
interrupt which is generated and handled by the
MVME162. The other is the VMEchip2 VMEbus IRQ3
interrupt which is generated by the MVME512 and
handled by the MVME162 through the VMEbus IRQ3
line. We use the VMEexec system service claimvct to
declare the entry address and another parameters of the
ISRs in both ISR implementations.

A device driver handles requests made by the pSOS+
kernel with regard to a particular type of device. The
pSOS+ furnishes a device-independent, standard methord
for integrating drivers into the system and for the user`s
application to call these drivers. We have realized two
drivers, one for the A/D board MVME512, another for the
digital board MVME510, and integrated them into the the
system. By isolating device-specific code in a device driver
and by having a consistent interface to a kernel and
application, adding a new device and performing I/O
operations is easier. The I/O device driver is the base of
the control software in large scale real-time systems.

VMEbus

target 2
MVME162

VMEbus master/
slave

target 3
MVME162

VMEbus master/
slave

I/O board
MVME512

VMEbus slave

$0 $2000000 $2400000 $3C00000 $4000000

$FFFF0000

$FFFF03FF

$FFFFFFFFthe prototype's
VMEbus slave
address space

global memory
partition no used

host (node 1) 32MB node 2 4MB node 3 4MB MVME512 1KB

VMEbus access
protection

host
MVME187

VMEbus master

Figure 3. The VMEbus address space of the prototype system

X windows
application

 Local terminal
application

Network
communication

Daul-ported memory
and

Global semaphores

ISR

Interruptor

Interruptor

ISR

Real-time I/O applications

I/O device
drivers

VME-based

I/O
modules

target 2 target 3

Figure 4. The software architecture of the VMEbus-based parallel processing system

3.6 VMEexec network environment(VNE)

The VNE server task provides a socket interface for the
communication between VMEexec targets and computers
which run different operating systems with the TCP/IP
protocol. We ran a pair of sending and recieving
applications in two conditions. In both conditions, the
UNIX socket interface is used by the host`s receiving
application.
• In the first condition, the sending application and the

VNE server task just reside in target 2.
• In the second condition, the VNE server task resides

on target 2 and the sending application resides on
target 3. The VNE socket interface used by target 3
transparently used a Remote Procedure Call (RPC)
mechanism to communicate its requests to the VNE
server residing on target 2 via the VMEbus.

4 The VMEbus-based parallel processing system

The VMEbus-based parallel processing system includes
two MVME162 modules and several high performance I/O
modules. All these modules are assembled in one VME
chassis. The tasks of the system include the X Windows
man-machine interface, local character terminal
applications, network communications, and real-time I/O
operations.

Because the system includes several high performance
I/O modules, such as the MVME512 with a A/D
conversion time of 33µs, and because the system is
required to fully use the performance of the I/O modules,
the first MVME162 runing the real-time I/O operations
bears a heavy load. The second MVME162 must be added
to share other tasks. The software architecture of the
system is shown in figure 4.

Target 2 runs X Windows, the local terminal and

network communication applications. Target 3 performs
real-time I/O operations through I/O device drivers. Two
targets exchange data and sychronize their operations
through daul-ported memories and global semaphores. The
interruptors and the ISRs reside on both targets to
accomplish some critical operations related with the two
targets. In this VMEbus-based parallel processing system,
the performance of the real-time embedded applications is
scaled beyond the capabilities of a single CPU.

5 Current status

With the prototype system, the network download,
multiprocessor operations, ISRs, I/O device driver and
network communications through the VNE socket interface
have been realized. In the R&D stage of the BTCF, a SUN
workstation, the VxWorks operating system and the EPICS
software tool kits will be installed in our system to develop
the control system of BTCF.

References

[1] VMEexec User`s Guide,” by MOTOROLA Computer
Group.
[2] pSOS+/68K Real-time Executive User`s Guide,” by
MOTOROLA Computer Group.
[3] VMEexec System Services User`s Guild,” by
MOTOROLA Computer Group.
[4] VMEexec Networking Environment User`s Guild,” by
MOTOROLA Computer Group.
[5] THE VMEbus SPECIFICATION, by VMEbus
International Trade Association.
[6] MVME162 Embedded Controller Programmer`s
Reference Guild,” by MOTOROLA Computer Group.
[7] MVME512-003 and MVME512-004 User`s Manual,
by MOTOROLA Computer Group.

