
The ESA Software Engineering Standard
and Its Applicability to HEP

Jonathan Fairclough* and Wayne Salter**
Anite Systems

*Genesis Business Park, Albert Drive, Woking, Surrey, GU21 5RW, UK
**DAS House, Quayside, Temple Back, Bristol, BS1 6NH, UK

Abstract

The European Space Agency (ESA) began development
of its Software Engineering Standard PSS-05 in 1984 and
this effort culminated with the release of the current
version, version 2, in 1991. The standard has since been
successfully applied to a large number of ESA projects. In
1994 the standard was brought into the public domain
through its publication by Prentice Hall and since then has
been adopted by a number of other organisations. For
many of these organisations it now forms the basis of their
Quality Management Systems (QMS). In 1994 CERN
became interested in PSS-05 and has since that date
applied it to a number of projects with varying degrees of
success. In 1996 a Software Engineering Standard User
Group (SESUG) was set-up by representatives of 12
European organisations; all major users of PSS-05. The
SESUG has since initiated the preparation of a new version
of the standard that is intended to take into account not
only new developments in information technology but also
the extensive experience gained by members of the
SESUG through the application of PSS-05 in their
domains.

The paper is intended to address the applicability of
PSS-05 in the High Energy Physics (HEP) community. It
starts by giving a brief overview of the standard itself and
of the goals and benefits of applying it to software
development projects. It summarises how the standard has
been applied to projects at CERN and highlights the
benefits and difficulties that have encountered on these
projects. The paper then provides an overview of the
improvements that are proposed for the next issue of the
standard and indicates how these address the problem areas
experience by CERN applying version 2 of the standard.

1 PSS-05

Projects can succeed or fail. Projects aim to deliver on
time and within budget, and project management is the
technique for achieving this. Similarly projects aim to
deliver products that are fit for purpose, and therefore all
projects need some form of quality management. ESA
recognised some time ago that the absence of project and
quality management is a major risk to any project, and
developed a comprehensive definition of how to manage a
software project and as a result develop quality software.
This definition is contained in the PSS-05 series of
standards and guides.

The PSS-05 standard applies to all software produced
for ESA and includes a life cycle reference model with

defined activities, inputs and outputs. Moreover it
describes all associated management activities - project
management, configuration management, quality
assurance, and verification and validation - that are
required to be performed to ensure a successful outcome to
the overall project.

To ease the production of the major documents and to
monitor the progress of the project throughout the software
life cycle, the PSS-05 standard also contains a number of
document templates, as well as clearly identifying when
major reviews, including both the customer and the
software developer, should take place.

The PSS-05 guides provide an easy to understand set of
guidelines covering all aspects of a software development
project, and following the standard leads to discipline and
quality. Newcomers to the PSS-05 standard can be secure
in the knowledge that it has been tried and tested in a large
number of projects, and that the experience gained is being
channelled back into evolving the standard through the
SESUG [1], of which CERN is an active member.

The PSS-05 standard has been published as ″Software
Engineering Standards″ [2]. The ten associated guides have
been collected into a book and published as ″Software
Engineering Guides″ [3].

The structure of the PSS-05 standard is based around a
software life cycle reference model that defines the
activities for each phase as well as identifying the inputs
and outputs to/from each phase. The following phases are
defined:

• User Requirements (UR) or ′problem definition’ phase.
Requirements to be written from a user′s point of view.
The system is treated as a ″black box″.

• Software Requirements (SR) or ′problem analysis′
phase. The user′s requirements are analysed and a set
of software requirements produced. Requirements on
the internal functioning of the black box are defined to
meet the user requirements.

• Architectural Design (AD) or ′solution′ phase. A set
of software components and their interfaces are
defined as a framework for developing the software.

• Detailed Design (DD) or ′implementation′ phase. The
design outlined in the AD phase is defined in more
detail and the software is coded, tested and
documented.

• Transfer (TR) or ′handover’ phase. The software is
installed in the operational environment and the
capabilities of the software, as given in the User
Requirements Document (URD), are demonstrated to
the user.

• Operation and Maintenance (OM) phase. The software
enters practical use and is maintained.

The PSS-05 standard includes three applications of the
reference model: waterfall, incremental delivery,
evolutionary delivery. The waterfall assumes that all the
above phases are performed in a sequential manner. The
incremental delivery approach follows the waterfall
approach up to the AD phase and then allows the DD, TR
and OM phases to be split into multiple phases. The
evolutionary approach allows the complete life cycle to
repeated many times. The PSS-05 guides define a process
model for each phase including the corresponding life
cycle management activity. They also provide a mapping
to software engineering methods and tools.

The major strengths of the PSS-05 series are they:
• define the software engineering discipline
• can be used as the basis of ISO 9001 standard QMS
• efficiently incorporate products and processes in a life

cycle model
• easy to understand
• results in quality software
• tried and trusted
• training support available

2 Software projects at CERN

There are two types of project, those under the full
responsibility of CERN, and those under the responsibility
of the experiment collaborations. CERN projects are easier
as they are performed in one place, are under the full
responsibility of CERN, including the management of
manpower and budget resources, and are performed fully
under the CERN management hierarchy. CERN projects
have the following characteristics:
• Users are often developers
• Involvement of highly qualified physicists.

Such projects are generally performed by a team of
experienced staff working in one group within CERN. On
the other hand, projects performed in the experiment
collaborations are far more complicated, and have the
following characteristics in addition to those of the CERN
projects:
• Large distributed collaborations
• Limited management hierarchy
• Lots of Ph.D. students to do programming
• Experiments and therefore changing needs
• Developers are often not around for maintenance
• Developers are often only around for a few years

The last two points also apply to CERN in-house
projects but to a lesser extent. These characteristics make
the risks below very likely:
• communication problems
• requirements change
• personnel change
• technical novelty
• cost underestimation

A structured approach to project and quality
management is essential for success according to all the
criteria below:

• within budget
• within timescale
• meaningful test results
• scientific discoveries

Often success on one of the criteria is used to excuse
failures on other criteria. Scientists are both users and
engineers in CERN projects. We believe that scientists
must learn and apply engineering techniques if large
CERN projects are to be successful. In short, scientists
must learn to switch roles. Furthermore, we believe that the
situation at CERN is representative of the HEP community
at large.

3 CERN experience with PSS-05

Many people at CERN have recognised that to ensure
the success of its software projects the application of a
proper software engineering standard is essential. PSS-05
was therefore adopted by CERN and has been applied on a
large number of projects (> 20) in a wide range of
technical areas.

It should be noted that although PSS-05 has been applied
to a large number of projects, it has generally only be
selectively applied because of a number of reasons which
are discussed below. That is to say that it has typically only
been applied for specific phases of the life cycle, and
predominantly for the user requirements phase.

Below we look at the two main areas in which PSS-05
has been applied and the experience gained through it; In-
house software Development and Information System (IS)
Acquisition.

To aid the usage of PSS-05 at CERN, and in particular
in the production of URDs, a URD template has been
produced using Framemaker, which can then be converted
to a Web browser readable format using a CERN
developed tool called Webmaker. Similarly Word 7.0
templates have been produced for all PSS-05 defined
documents. Furthermore a number of training courses have
been conducted to introduce PPS-05 to CERN and the
experiment teams working there and additionally some
specific consultancy has been taken to assist in its
application to a number of projects.

3.1 In-house software development projects

3.1.1 Usage

PSS-05 has been applied to a number of software
development projects, particularly for software systems for
the Large Hadron Collider (LHC) experiments, for both
on-line and off-line software. The motivation to use PSS-
05 in this area has been to encourage good software
engineering practices and to develop a standard way of
working across the large number of institutes participating
in the LHC experiment collaborations. To-date PSS-05 has
primarily been used by users as a means of clearly
specifying and documenting their requirements, which are
then used as the basis against which the systems will be
developed. On a much smaller number of projects it has
further been used as a software development methodology
throughout the complete development cycle. For all these

projects the clear definition of activities to be performed,
deliverables to be produced and reviews to be held as
defined by PSS-05 has aided the overall development
process.

3.1.2 Benefits

As stated above PSS-05 has been extensively applied for
the requirements definition phase of numerous projects and
has been shown to provide significant benefits, both to the
developers in having a defined set of requirements from
which to work, but also to the users in helping them to
define their needs. Major benefits are as follows:
• the users are forced to think clearly about their

problem at an early stage
• it produces a clear specification of what is required
• it leads to a common understanding for all involved
• allows commonality between similar systems to be

more clearly identified
• document against which acceptance testing can be

done
• allows traceability through design and development
• a thorough URD helps to reduce the scope of the

changes later - but cannot eliminate them altogether
Few projects have gone past this phase, partly due to the

early nature of the LHC developments, and partly due to
the problems described below. However, for the projects
that have applied the standard right through the complete
development cycle it has been shown to be effective in
encouraging good engineering practices and a consistent
way of working across a large number of participating
sites. For these projects the standard was not applied as is,
but rather a tailored version was applied.

3.1.3 Problem areas

First of all there appears to be a cultural problem in
introducing standardisation of any kind into the HEP
community and this applies equally well to the
introduction of software engineering standards. However,
for those who have tried to apply PSS-05 a number of real
issues were also raised:
• It is perceived as too rigid and bureaucratic by the

majority of users
• It cannot generally be applied as is, and there are no

guidelines provided on how to tailor it to the specific
needs of the project

• Although it contains three life cycle models it is
largely based around the waterfall life cycle which is
generally not applicable for HEP projects

• It does not easily lends itself to Object Oriented (OO)
projects

• Is purely a software engineering standard and does not
include guidelines for H/W and software projects

The perception of rigidity and formality can be removed
by providing training. Most new users of the standards
need to be educated in the concepts underlying the
practices before the practices can be accepted. Likewise,
training can also educate users of the standard in applying
it to their projects.

 The reference model that is used within PSS-05 to

describe the logic of software development corresponds
directly to the waterfall model, but they are not necessarily
one and the same. Unfortunately this difference is often not
understood, and many people new to the PSS-05 standard
follow a waterfall approach by directly applying the
reference model without considering the needs of their
project. Project managers should design a project-specific
life cycle approach based upon one of the approaches in
the PSS-05 standard.

ESA has successfully used OO methods in numerous
projects where PSS-05 has been applied. The lessons learnt
include:

• the mapping of OO methods to the life cycle
• the start and end criteria for each phase
• the importance of ′use cases′ for coordinating all

phases of development (the use cases replace the
functional requirements in the development
methodology)

ESA is currently preparing a guide for OO projects
based upon the experience above.

With regard to system projects, generalisations of PSS-
05 for system projects have been developed by some
members of the SESUG and these ideas and the
experienced gained applying them will be incorporated
into the follow-on version, see section 4.

3.2 IS acquisition

3.2.1 Usage

In a number of cases PSS-05 has been used to aid the
control of IS Acquisition (outsourcing projects). In these
cases a specific development has been performed by an
external contractor to meet the needs of CERN. In
particular PSS-05 was applied to help the definition of the
work specification through the production of detailed
URDs, and to manage the contract using the guidelines
contained in PSS-05 for the software project management.
PSS-05 has additionally been used to produce
specifications, against which off-the-shelf products are
evaluated for suitability for a particular need.

3.2.2 Benefits

The production of a specification according to the
guidelines of a URD significantly helped to define clearly
the scope of the IS development, and formed a good basis
for the contractual agreement between CERN and the
contractor. In defining PSS-05 as the software engineering
methodology to be followed by the contractor, the CERN
personnel monitoring the contract were given a clear
baseline against which to monitor the progress of the
development. A risk seen by CERN in outsourcing
software development has been the potential need to rely
on the contractor for maintenance and further
modifications to the system due to a lack of in-depth
knowledge by the CERN staff of the system. However, it
has been shown that in holding the formal technical
reviews as defined in PSS-05 and by insisting on the
deliverables specified in PSS-05, the CERN staff have
been able to follow closely the development and were able

to take over the maintenance of the system and
subsequently perform modifications to it.

3.2.3 Problem areas

Although the use of PSS-05 has produced significant
benefits it does not contain guidelines for the management
of the tender process or specific guidelines for contract
management.

3.3 Summary

The experience seen at CERN and within the LHC
collaborations is assumed to be fairly typical of HEP.
There seems to be a certain reticence on the part of
physicists to work in a formal manner as this is typically
perceived to stifle creativity and reduce flexibility.
Furthermore, PSS-05 is perceived as being very document
heavy and therefore time consuming to apply. On the face
of it there is a certain amount of truth in this. However a
number of projects have shown that with a flexible
approach and some customising of the standard, it can be
applied in a way that reduces the effort to an acceptable
level, and still produces noticeable benefits. The main
benefit to-date has been shown in the area of requirements
definition which is then documented in the URD.

In the HEP environment where the development team is
often not around for the maintenance, the development of
documentation/standard approach/quality helps future
maintenance. Well documented and engineered software
systems will significantly improve the maintenance of the
systems over the projected long life-times. This is
especially important when taken together with reduced
budgets and manpower and with an operational lifetime of
more than 15 years as is the case for LHC.

4 Developments with version 3

At a meeting of the SESUG in March of this year it was
decided to produce an update to PSS-05 to reflect the
changes in Information Technology (IT) and to take
account of the considerable experience already gained with
the current version PSS-05 [1]. At this meeting, a
suggested list of changes, which had been derived from
suggestions made by the members of the SESUG, was
presented in draft form. Version three is expected to be
produced in 1998. The major issues which will be
addressed in the new version are described below.

4.1 Compliance with ISO 9001/9000-3

As stated previously, many of the organisations which
form the SESUG have based their QMS on PSS-05. Many
of these organisations have, or intend, to apply for ISO
9000 certification. Therefore, it is clearly desirable that the
follow-on version of PSS-05 should be fully compliant
with the relevant ISO standards.

4.2 Compliance with ISO/IEC 12207

This new international standard defines the vocabulary
of software engineering, and defines at the top level that
software engineering consists of a number of processes.
These are:

• primary life cycle processes, covering acquisition,
supply, development, operations and maintenance

• supporting processes, such as configuration
management, verification, validation and quality
assurance

• organisational processes, such as management,
infrastructure and improvement

Any new ′organisational′ standard, such as a follow-on
to PSS-05, needs to comply with ISO/IEC 12207 by using
its vocabulary and process definitions which should then
be tailored to the needs of the organisation.

4.3 Consideration of small projects

PSS-05 was produced in an environment where large
projects requiring hundreds of man-months of effort were
common place. The standard was therefore optimised for
the management of large projects. However, PSS-05 is
intended to be used on all types of software projects, large
or small, and for any software application. Experience has
should that there are always many more small software
projects as large ones, but people applying the standard on
small projects have been forced to modify PSS-05 in
several ways to be able apply it for such projects. This
experience is being incorporated into the new version
which will primarily look at smaller projects, but indicate
additional practices that should be applied to larger
projects. See also the comments regarding tailoring below.

4.4 Consideration of OO development

OO has caused a paradigm shift in the way software
engineers analyse and design software. Programming
languages have changed from procedural languages such
as Fortran and C to OO languages such as C++, Ada and
Eiffel. The follow-on to PSS-05 needs to be consistent
with OO analysis, design and development methods and
reflect the increasing dominance of OO in software
engineering.

4.5 Consideration of contract/tendering issues

Contracting and tendering issues were intentionally left
out of PSS-05 because ESA already had a separate set of
standards/procedures for handling these issues. However,
PSS-05 has now been adopted by a number of other
organisation for which it also forms the basis of their
QMS. It is essential that contract and tendering issues are
now addressed in the follow-on version.

4.6 Simplification of document templates

The document templates were again based on the
concept of large software developments and have proved
to be too heavy for smaller projects. The follow-on will
provide simplified document templates to reduce the load
for small projects, which is in-line with point 3 above.

4.7 Software re-use and COTS products

One way to reduce ′time-to-market′ and deliver better
systems faster is to re-use software. This may be done by
buying commercial off-the-shelf (COTS) software,
obtaining ′shareware′ or re-using software already

developed by the organisation. The follow-on to PSS-05
must deal with the issues involved with the use of such
software. There are major quality issues involved with re-
use and it will certainly help to include aspects of the ISO
9001 purchasing requirements.

4.8 Guidance for projects that are not pure software

Most modern projects are not simple software projects,
but are rather development projects′ where both hardware
and software aspects are involved. As described earlier
PSS-05 was developed as a software engineering standard,
but it is recognised that it would be beneficial if the
standard addressed complete IT projects.

4.9 More life cycle approaches

PSS-05 currently contains three life cycle models.
However, it is clear that in practice these life cycles are not
sufficient to covering all projects’ needs. The follow-on of
PSS-05 will emphasis processes, activities and tasks that
are fundamental, and stress that the life cycle should be
adapted or designed individually to meet the needs of the
project.

4.10 Tailoring

The experience has shown that for the most efficient
usage of the standard it is important to tailor it to the
specific needs of the project. The current version does not
include any guidelines on how to perform this. The follow-
on version will therefore contain a number of guidelines on
how to tailor PSS-05 to the particular needs of the project
concerned.

Given the list of proposed changes one might be tempted
to ask why one shouldn′t throw away PSS-05 and start
from scratch. However, the users of PSS-05 have made
considerable investments in developing a successful
software engineering culture around the standard, and it is
essential that the follow-on builds upon those investments.
As such the follow-on should be seen as being an evolution
of the current version, which maintains the general
philosophy and style of it while incorporating the changes

which are clearly necessary to enable PSS-05 to remain a
popular and applicable software engineering standard for
modern IT projects.

5 Conclusions

PSS-05 has now been applied at CERN on a large
number of projects despite an initial reluctance from the
HEP community. Where it has been applied a number of
problem areas have been identified, but nonetheless
significant benefits have also been seen. A follow-on
version has been designed that addresses the majority of
the problems highlighted by the CERN usage and will
enable PSS-05 to be applied in a more straightforward
manner. This initial experience shows that PSS-05 can be
successfully used in the HEP community once the initial
reticence of applying formal methods has been overcome,
and if some flexibility is allowed. The follow-on version
should provide an even better basis for good software
engineering practices to be applied to HEP projects. It is
important to consider that future HEP projects are likely to
be done on lower budgets and with less resources, and as
such a more efficient approach to software development
will be necessary, particularly to reduce the amount of
effort required for maintenance and to avoid a re-
engineering of the system as a result of turn over of staff
and lack of documentation.

References

[1] Proceedings of the SESUG Workshop, CERN, March
6th-7th March 1997, available from Jon Fairclough at
Anite Systems

[2] C. Mazza, J. Fairclough, B. Melton, D de Pablo, A.
Scheffer, R. Stevens, Prentice-Hall, 1994. ISBN 131
065 688

[3] Software Engineering Guides, C. Mazza, J.
Fairclough, B. Melton, D de Pablo, A. Scheffer, R.
Stevens, M. Jones, G. Alvisi, Prentice-Hall, 1995.
ISBN 0-13-449281-1.

