
Significance of a Comprehensive Relational Database System
for Modern Accelerator Controls

R. Bakker, T. Birke, B. Kuske, B. Martin, R. M¨uller
BESSY GmbH, Lentzeallee 100, D-14195 Berlin, Germany

Abstract

The advantages of a central ‘data warehouse’ that holds
relevant project data are obvious. Due to their flexibility
and given functionalities professional Relational Data Base
Management System (RDBMS) (like ORACLE) seem to be
better suited for this purpose than Object Oriented Data Base
Systems (OODBS) that are optimized for speed and struc-
tural sophistication.

In modern accelerator control diverse but multiply con-
nected data areas have to be maintained: Classical DB ap-
plications provide the static data necessary to activate real
time DBs for hardware control and data acquisition. Re-
cently generic high level software tools have come into use
that need complex configuration data. Theoretical models
and their connections to operational procedures can be put
into a reference framework due to the centralized storage of
design data, calibration factors, geometries etc. On the tech-
nical side active nodes are increasingly distributed on large
(multi-layered) networks. Different computer systems, each
optimized for its designed task, provide services different in
scope and multiplicity and require appropriate description
and configuration data.

RDBM systems support an excellent environment to con-
trol data flow and maintenance. Transaction tools allow to
import data from genuine sources while conserving owner-
ship and responsibilities. Programmed clients automatically
propagate RDBM changes and help to maintain global sys-
tem consistency. WEB gateways to the RDBM give platform
independent and structured access to the data, thus providing
high DB transparency. Todays RDBM properties even al-
low to consider archiving system performance monitor data
(‘logging’) with reasonable update frequency.

1 Introduction

Within the accelerator community DataBases (DBs) and
DB applications cover a large variety of functionalities and
data types. The International Accelerator DataBase Group
(IADBG) has set up a forum for the exchange of ideas in
1994 [1]. A survey of the DB activities within the IADBG
reveiled many differences in DB focus and intention, data
availability and complexity as well as a common interest to
share experiences.

This paper addresses the data flows, tools and DB client
applications relevant for the acceleratoroff-line control sys-
tem [2]. It is restricted to a description of what is done at
BESSY. Guiding idea of the DB design at BESSY has been
to set up asingleandunique reference repositoryfor all con-

figuration data needed by the control system and its applica-
tions.

2 Considerations suggesting a RDBMS

Configuration data necessary for moderate size installations
like the control systems for the light sources at BESSY could
in principle be mapped into a manageable number of plain
files. This approach is fast in the beginning but has serious
drawbacks on the long run.

Data integrity, validity, access control is not easy to guar-
antee in a file based system. Type checking of the data can
only be done by dedicated applications. Problems due to in-
correctly modified data are hard to trace back. Maintenance
cannot be done reliably in a distributed way. Multiple in-
stances like test, backup, old and obsolete versions of the
data files exist somewhere in the system simultaneous with
the reference data.

Adding a new device to the running accelerator complex
is frequently a very cumbersome and lenghty procedure. De-
vices appear in many different contexts. A device might be
subject to a monitoring program handling installation do-
mains and at the same time element of a correction proce-
dure dealing with certain equipment classes or types. Con-
figurations have to be modified at many different places.
The variety of configurations is increasing with the num-
ber of generic applications available. That problem would
be solved by a central and unique data source that allows to
generate the different data collections automatically.

At BESSY II a fully distributed three level control sys-
tem is installed[3]. It consists of console workstations, VME
crates and embedded controllers. The relations between con-
figuration data on the different levels are quite complex and
are a data area for itself even if configuration selfdetection is
implemented wherever feasible.

This type of considerations led in the early phase of
BESSY II to the decision to set up a relational data base pro-
viding all relevant reference data. The commercial RDBMS
ORACLE has been chosen for its powerful environment of
additional support packages and numerous third party and
public domain products.

3 DB design and implementation at BESSY

In the beginning no clear specification concerning the avail-
able and needed data existed. ORACLE has been unknown
so far and there has been no idea about the help a CASE
tool could give. Instead of adressing a DB design with an
information analysis based on formal methods a vague three

step development has been envisaged: (1) In order to get
aquainted with the ORACLE tools the design parameter list
should be transferred to the DB. (2) During the construction
phase the DB should incrementally obtain the references to
any type of control system related configuration data. The
present status of this step is described in this paper. (3) For
the operation phase the storage of data monitoring system
performance (‘logging’) has been foreseen.

3.1 Devices and names

As the only fixed structural element of the DB design any
data item relevant for the control system has to be assigned
to a specific component. And by convention every reference
to a component should be made by a symbolic name. The
word ‘component’ in this sense can refer to a piece of equip-
ment (device), a predefined group of such components or a
processor connected to the networks (symbolicor virtual de-
vice).

As commonly done, names are composed in such a way
that the identification of the specific unit out of a appropriate
device class and the structural subdomain of its location can
be identified (Fig. 1). The final naming convention has then
been fixed for the shortest possible strings that can be parsed
in a unique way [4].

2 D8 RPVS3

Counter:

Family:

Domain:

microtron
booster−synchrotron

Member:

Subdomain: doublet section sector 8
classification of structural
subdomain within domain.
Other possibilities:
 T1...T8, D1...D8 or
 S1...S16 in the booster−synchr.

storage ring
Other possibilities:
 M
 B

second device of same class
in the same subdomain

vertical steerer type 3
Class of device within family
devices of same class have same member

power supply
The corresponding magnet would be of
family M = magnets (VS3M2D8R)

Figure. 1. Elements of a typical Device Name

With respect to the RDBMS the atoms of information
contained in the names form a minimal data set that allows to
detect analytically any data item related to the name within
the data clusters associated (‘bootstrap’ DB).

3.2 Present DB scope

Along the coarse classification scheme contained within the
device names the DB has grown more or less chronologically
with the demands of the installation process. Great care has
been given to consistency. Primary data are entered once and
only once. Derived data are generated automatically by the

DB (‘constraints’, ‘procedures’). The data required by the
different applications in the specific context are provided by
appropriate views.

Today the DB consists of 190 tables, 140 views, 116 trig-
gers, 754 constraints, 232 indices, 28 packages and 7 stored
procedures. DB administration applications are 4 forms,
1 report, 150 WEB pages and 100 CGI binaries. Design,
implementation, administration, documentation and user in-
struction is done by a single DB administrator.

3.3 Role of CASE tools

Recently thePowerDesigner DataArchitectCASE tool [5]
has been applied to the DB. Using the reverse engineering
capability of this tool the physical data model has been anal-
ysed in terms of entity relationships. Blueprints of the DB
structure have been generated (Fig. 2). The results could be
inspected and global design and implementation details ex-
amined. Some (minor) implementation errors could be iden-
tified immediately and a simplified and clearer ‘streamlined’
structure was found. The required modifications of the DB
have been performed by the CASE tool itself.

Figure. 2. Blueprint of a Table Space
Even if only used for quality assurance purposes the

CASE tool enhances drastically the reliability and integrity
of the DB system. Today also the conceptual design of
new data areas at BESSY is done with thePowerDesigner
DataArchitectand the physical data model is generated au-
tomatically.

3.4 Data import and maintenance

With ORACLE a large variety of tools is available that al-
lows to enter data into the DB. At BESSY the following se-
quence of procedures has shown to be very efficient.

On a request to add a new data area the DB administrator
sets up appropriate tables for the data, the tags (modification
time, DB user etc.), relations and access permissions using
the Oracle ServerManager.

The data already existing in a variety of storage formats
on different computers are converted to the intermediate
standard CSV (Comma Separated Values) table format (Fig.
3). For this purpose either the appropriate storage mode is
selected (EXCEL) or custom filters are set up. The geomet-
rical reference data for example have been extracted from
the approved AutoCad drawings with lisp scripts and then
postprocessed by a Turbo Pascal program.

The ASCII tables are mostly dumped into the DB by the
DB administrator using embedded SQL in tiny C programs
or the Oracle Loader. In some cases the person responsible
for the data content usesoratcl scripts [6] to transfer the data
from a primary source to the DB.

Name

Name

Name

AutoCAD

Measurement Text Editor

EXCEL

Intermediate
CSV Table

Oracle
Loader

D
at

ab
as

e

O
R

A
C

LE

lisp
script

save as ...

Oracle
Forms

Oracle
Forms

Data
Import

Main−
ten−
ance

Equipment
Specialist

Figure. 3. Initial Data Import and DB Maintenance

Once the tables have been set up maintenance of the data
is supposed to be done by the person in charge of the va-
lidity of the data. Typically the equipment specialists use
Oracle Forms applications prepared by the DB administrator
in their MS-Windows environment. Experienced UNIX pro-
grammers take advantage of the OCI (Oracle Call Interface)
library and a programming language or use anoratcl script.

3.5 Data export and queries

For the queries of all day development work theoratcl ap-
plication oddis[7] has shown to be easy to use and power-
ful. Oddisis a lightweight tool for administrating ORACLE
databases. It combines DB system inspection capabilities
with SQL input facilities sufficient for the DB user. It has
a subset of the Oracle Server Manager functionalities but is
far less complex.

Static configuration files for distinct control system mod-
ules are generated by customoratcl scripts or C-programs.
These are part of themakeprocedure associated with the ap-
propriate module. Themakeinstructions take care of a pos-
sible postprocessing and of the staging to the proper instal-
lation place.

C/C++ -programs perform online queries through OCI.
MS-Windows users utilize the ODBC (Open Data Base Con-
nectivity) interface to load the data of interest directly into
EXCEL.

In order to make the content of the DB as widely avail-
able as possible the key views have been made WEB ac-
cessible and browsable [8] with html forms. The Common
Gateway Interface (CGI) has been implemented with C pro-
grams. Mostly the output is standardized to html tables using
a small set of C macros. There have been experiments with
graphical navigation pages too. The biggest advantage of
the http type of DB access is that data can be retrieved and
checked by everybody concerned wherever there is a com-
puter attached to the network independent of the individual
computer skills.

3.6 Backup strategy

The whole DB is exported to another hardware device every
night. These snapshots cover the period of one month. The
‘hot’ backup procedure available with ORACLE will be set
up as soon as the file server capabilities make it feasible. In
addition the DB files are included in the standard procedure
of file system backup to a tape robot.

4 DB applications at BESSY

Certainly DB applications are the least portable part of a
control system since they map the specific configuration of
the accelerator complex. Nevertheless methods applied and
structural requirements are comparable.

Today the embedded controllers run only generic IO soft-
ware. The programs initialize according to the actual hard-
ware configuration detected. The only varying DB entries
for this set up of the controllers are basically CAN network,
CAN node number and name of attached device. This sim-
ple situation will change as soon as table driven autonomous
control tasks or complex data preprocessing have to be exe-
cuted by the embedded controllers. Then the individual pro-
grams and the corresponding data have to be prepared for the
download to the controller assigned to the related device(s).

For new developments of console level applications the
cdev API [9] has been made mandatory. The device de-
scription files connectingcdevattributes with the underly-
ing services are generated from ORACLE with simpleoratcl
scripts.

Presently applications of considerable complexity focus
on the configuration of the real time DB and the generic con-
sole level applications.

4.1 Real time DB for data aquisition

At BESSY the EPICS control system toolkit is utilized. The
real time database (RT-DB) is a fully distributed function
block database residing on the VME front end computers
called IOC (IO Controller). Functionality of the RT-DB
can be graphically constructed with a schematic editor. The
ASCII RT-DB description files are generated by postprocess-
ing. The templates describing a certain class of devices are
created with the graphical editor by the controls group.

The RT-DB configuration process supports ‘templates’,
i.e. static data varying from device to device with equal func-
tionality are configurable via placeholders that are replaced
by the appropriate values at RT-DB start time of the RT-DB.
The individual values assigned to the placeholders have to be
available in a separate file downloaded during instantiation.
These static data assigned to the specific unit of a class are
retrieved from ORACLE withoratcl scripts.

Maintenance of this configuration part of the RT-DB is
fully automatized (Fig. 4). Responsibility for data validity
as well as modification permission is given to the equipment
specialist. No mediating action of the controls group is re-
quired. The person responsible for a certain device performs
necessary modifications directly to ORACLE (e.g. with Or-
acle Forms).

Name

Name

Name

D
at

ab
as

e

O
R

A
C

LE

Oracle
Forms

WEB
Page

Update

Schematic
Editor

Name

Real Time
Database

Database
Template

Controls
Group

Automatic

Monitoring

make

Database
Instantiation

Equipment
Specialist

Load Script

cron

Figure. 4. Automatic Update of the RT-DB

When the changes are committed a DB trigger starts a
make run that generates the new configuration files as well
as a download script and puts them into place. Whenever
operations allow the download of the new values or a reboot
of the affected IOC(s) the modification is completed. From
data entry into ORACLE to installation the whole process
can be monitored on a WEB page (Fig. 5).

4.2 Configuration of generic applications

Today several generic applications are available within the
accelerator controls community. They cover certain standard

Some browsers (Netscape e.g.) will refresh automatically
at 2 minute intervals.

Others will require a RELOAD
of this page.

Note, that remote accesses are not allowed and the program only works from 5:00 to 22:00.

Status of EPICS Power Supply Database Creation

Last Database Creation
USERNAME DAT TIME ACTION ERROR

Changed Power Supplies
NAME USERNAME DAT TIME
Q2PM ODBADM 27-OCT-97 11:19

Last APPLY Action
USERNAME DAT TIME ACTION ERROR
BIRKE 27-OCT-97 11:20 pre pre create database

Error Actions
USERNAME DAT TIME ACTION ERROR
BIRKE 16-MAY-97 14:19 fail during make
BIRKE 16-MAY-97 14:20 fail during installation
BIRKE 16-MAY-97 14:21 fail during installation
BIRKE 20-JUN-97 11:02 fail during make

History of Actions

--BIRKE --27-OCT-97--11:20--pre --pre create database
--BIRKE --04-SEP-97--17:26--o.k.--make/install successful
--BIRKE --20-JUN-97--12:05--o.k.--make/install successful
--BIRKE --20-JUN-97--11:31--o.k.--during installation, repaired
--BIRKE --20-JUN-97--11:02--fail--during make
--BIRKE --04-JUN-97--09:01--o.k.--make/install successful
--BIRKE --28-MAY-97--12:39--o.k.--make/install successful
--BIRKE --22-MAY-97--11:51--o.k.--make/install successful
--BIRKE --22-MAY-97--10:21--o.k.--make/install successful
--BIRKE --16-MAY-97--14:46--o.k.--make/install successful

Figure. 5. WEB Page Monitoring DB Changes

requirements if reasonably configured. The following exam-
ples illustrate the different data structures involved.

4.2.1 Static

Programs from the EPICS toolkit likeParameter Page,
Save/RestoreandAlarm Handlerneed configuration files in
different formats. The static file(sets) of these configurations
are generated withoratcl or C-programs from ORACLE.

Common characteristic features are the assignment of a
fixed set of IO channels to a device and the two dimensional
structure of collection of devices: Pieces of equipment out of
one functional area of the accelerator and one specific device
class are grouped into configuration ‘atoms’. These elemen-
tary configurations are then set up into the flexible groupings
and hierarchical trees required for operation demands.

TheArchiver program in addition has to take care of the
different data collection mechanisms (monitor, frequency,
etc.). Synoptic screens have to arrange control elements
and status displays in geometrical correspondence to the real
arrangement. Here filter programs derive the screen posi-
tions from real locations found in the DB. The synoptic in-
stances displayed by theMedmprogram are generated with
adl gen[10].

For the static configurations system consistency has to be
taken into account at modification time. Whenever new data
are committed to the DB a make run has to be initiated that
propagates the changes with an update of all affected files.

4.2.2 Dynamic

Generic applications newly developed at BESSY query the
DB directly for configuration data. These programs are less
portable but automatically consistent whenever they connect
to the DB.

Name

Name

Name

D
at

ab
as

e

O
R

A
C

LE

Name

Real Time
Database

OCI
OCI

C−Programs
oratcl scripts

M
od

el
C

re
at

or

SQL
Queries

mixed
type
Program

config.
files

dynamically
configured
Program

statically
configured
Program

Device Access

Oracle
Forms

Update

Figure. 6. Configuration Types of Generic Applications

4.3 Mixed type

Arrangement of devices, magnet length, positions, i.e. the
static part of the modelling toolkit are extracted from the
DB by C programs (using embedded SQL) and stored in
C++ class creator files. Due to conceptual reasons of the
modelling toolkit these static informations have to be com-
piled into the code. Programs utilize the modelling toolkit
via shared libraries. Modifications of relevant data require
an update of these libraries. After a restart the modelling
applications are consistent again.

At run time, i.e. working with the actual set points of
the accelerator, the programs retrieve the data still neces-
sary for a proper configuration (conversion factors, calibra-
tion curves, association of power supplies and magnets etc.)
from the DB using OCI.

4.4 Discontinued side–activities

The very first DB project at BESSY was the conversion of
the reference list of project design parameters from a word
processor file to the appropriate DB structure. It has been
meant to be a test ground for shaping of access control and
user interfaces. It should add the advantages of the DB data
retrieval capabilities. Once set up and corrected maintenance
has been abandoned basically due to a lack of interest.

All relevant geometrical information in the DB have been
derived from AutoCad drawings. Since most drawings are
hierarchical compositions of elementary drawings there has
been the intention to reverse the direction of data flow. Ap-
proved reference data should be entered into ORACLE and
the drawings generated from coordinates found in the DB
by lisp scripts. First studies promised a better consistency of
the reference drawings. For the time being this plan has been
suspended.

5 Plans for the future

The various filters and scripts generating the diverse config-
urations should be converted into generic forms. The goal is
to use the DB also for stuctural information now embedded
in the code of the extraction tools or of the dynamically con-
figured applications. Eventually a proper analysis finds out
that this meta information can be automatically derived from
the DB structure itself.

It is attractive to use the RDBMS for the data stream of
the long term archiver. The retrieval tool could then take
advantage of the DB extraction speed and the flexibility of
SQL queries. Performance tests and tuning of the DB will
check the feasibility of this approach very soon.

6 Summary

The early set up of the RDBMS proved to be very helpful.
A single repository of reference data and automatic proce-
dures obtaining derived entities made it feasible to generate
a system with a high level of consistency. Distributed main-
tenance turned out to be easy and reliable. Excellent data
transparency is provided through retrieval tools that are ap-
plicable in nearly any computer environment. The WEB in-
terface in particular does not require specific prerequisites.
This turns verification and display of the reference data into
an easy procedure that is common wherever questions con-
cerning installation parameters arise.

References

[1] http://www.cern.ch/IADGB/Welcome.html.
[2] According to the definition given in: J. Poole,

P. M. Strubin,A Survey of the Use of Database Man-
agement Systems in Accelerator Projects, Proceedings
of the ICALEPCS’95, Chicago 1995, USA

[3] J. Bergl, B. Kuner, R. Lange, I. M¨uller, R. Müller,
G. Pfeiffer, J. Rahn, H. R¨udiger, Embedded Con-
trollers, Field Bus and a Modular IO Concept: Cen-
tral elements of BESSY II Controls, PAC97 , Vancouver
1997, Canada

[4] http://www.bessy.de/control/API/namconv.html.
[5] PowerDesigner DataArchitect, PowerDesigner 6.0

Family of Products, PowerSoft Design Tools, Sybase
Inc.

[6] oratcl was written by T. Poindexter
<tpoindex@nyx.cs.du.edu> and is available on all
major Tcl/Tk ftp servers

[7] oddishas been developed at the University of Hanover,
Germany and is available under the GNU General Pub-
lic License

[8] http://www.bessy.de/oracle/.
[9] J. Chen, W. Akers, G. Heyes, D. Wu, C. Wat-

son, An Object-Oriented Class Library for Develop-
ing Device Control Application, Proceedings of the
ICALEPCS’95, Chicago, 1995, USA

[10] adl gen is a C-library for generating adl-files (Ascii-
Display-List), written by Jeff Karn (TJNAF)

