
Centrally Managed Name Resolution Schemes for EPICS

Ding Jun*, David Bryan**, and William Watson**
*Institute of High Energy Physics of the Chinese Academy of Sciences, P.O. Box 918(7), Beijing, 100039

P. R. China
**Thomas Jefferson National Accelerator Facility, MS12A2, 12000 Jefferson Ave., Newport News, VA 23606

USA

Abstract

 The Experimental Physics and Industrial Control System
(EPICS) uses a broadcast method to locate resources and
controls distributed across control servers. There are many
advantages offered by using a centrally managed name
resolution method, in which resources are located using a
repository. The suitability of DCE Directory Service as a
name resolution method is explored, and results from a
study involving DCE are discussed. An alternative
nameserver method developed and in use at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab) is
described and results of integrating this new method with
existing EPICS utilities presented. The various methods
discussed in the paper are compared.

1 Introduction

 A key component of a large control system is the ability
to access control points by name, independent of location.
This process of name resolution and control point location
is an important and critical piece of any large scale control
system. EPICS is based on a client/server system, in which
clients locate channels by broadcasting search requests to
all of the Input/Output controllers (IOCs). This method is
generally associated with LAN environments, and is an
excellent mechanism for locating control points in a LAN
environment. EPICS functions in a WAN environment by
using lists of IP addresses, which can be either individual
hosts or IP subnet masks, to which name resolution
requests are sent. While this system offers the advantages
of distributing the name resolution process and
simplifying name data management, it is not without
drawbacks. [1]

 On large control systems or systems with a large number
of hosts, this broadcast method requires a large number of
broadcasts resulting in increased network load.
Additionally, each IOC must process every request,
whether or not it is intended for that IOC. The time spent
processing these requests is time that the IOC cannot
spend on its core functionality of device control. By off-
loading these functionalities to a centrally managed
nameserver or servers, significant improvements in the
speed of some key EPICS components may be realized.
 This paper explores several approaches to using a
centrally managed system. Results of a study conducted by
Ding Jun and William Watson on the suitability of DCE,
or Distributed Computing Environment are presented.

Results from the design and use of an alternative
nameserver developed by David Bryan and William
Watson are
discussed.

2 Overview of DCE and DCE test environment

 DCE was originally developed by OSF (Open Software
Foundation) and is currently supported by many vendors,
including Sun, HP, and IBM. DCE consists of several
components which are designed to work closely together:
[2]

• DCE Threads: support the creation, management, and
synchronization of multiple threads of control within
a single process.

• DCE Remote Procedure Call (RPC): consists of a
development tool and runtime service. The
development tool includes a compiler for a language
(IDL, Interface Development Tool) for developing
applications following the client/server model. This
code can be used to automatically generate code to
transform procedure calls into network messages.

• DCE Directory Service: a service which maintains
information about resources such as users, machines,
and RPC-based applications within the distributed
system. The information consists of the name of a
resource and associated attributes, including the
resource′s location.

• DCE Distributed Time Service (DTS): provides
synchronized time on the computers in a distributed
computing environment.

• DCE Security Service: provides secure communica-
tions and controlled access to resources in the
distributed system.

• DCE Distributed File Service (DFS): allows users to
share files anywhere on the network, regardless of the
file′s physical location.

 DCE Directory Service is used by the core DCE services
and DCE applications to locate distributed, rapidly
changing resources. This service is composed of three
parts
• Cell Directory Service(CDS): stores names and

attributes of resources located within a DCE cell.
• Global Directory Service(GDS) or DNS: used to look

up a name outside of a local cell.
• Global Directory Agent: serves as an intermediary

between a cell's CDS and the rest of the world.

 The Directory Service uses an extended form of the
client/server model. It consists of servers, clerks, and
clients. A CDS server stores and maintains CDS names
and handles requests to create, modify or look up data.
Each host using CDS runs a CDS clerk to act as an
intermediary between the server and client. The Directory
Service also provides a programming interface, which was
extensively used in the test code.
 The test environment for DCE was set up at Jefferson
Lab. A two machine cell consisting of one IBM and one
HP workstation was established. The core DCE servers
were placed on the IBM machine, while the HP functioned
as a client. Since these two machines together formed a
cell, only the CDS service was used.
 The DCE application used for the test consisted of two
test servers which have different resources but the same
interface, and one test client. When the client sends a
request by resource name, the CDS is consulted to
determine which server has that resource. The correct
server is then contacted and performs the required
operation.
 Client programs may search for resources in one of two
ways. They may search by interface, such as when adding
a resource. In such a case, the client doesn't care which
server processes the request, as long as it has the correct
interface. When deleting a resource or executing a
command on a resource, the client will search by resource,
as it must contact the specific server that manages that
resource.
 An interface to be shared between the client and the
server was defined using IDL. This can then be used to
generate stub code as an intermediary between the
application code and the RPC runtime library. In client
code, a remote procedure call appears to be a local call,
because the stub code will handle these calls to execute
the binding operation.
 At boot time, the server location and other information
is exported by the server initialization code. After the
server is initialized, all remote procedure calls are
executed in the server management code. Three operations
(add/delete/show) can be executed on a resource by the
server.
 Once the code is compiled and the server initialized,

another important consideration is access control. DCE
has an important feature called ACL (Access Control
List). These are used to protect resources in the
distributed environment. In order to modify the data in the
CDS, the server needs to have permission on that cell.

2.1 DCE experiment and results

 Test code was written to measure the average time for
DCE application clients to look up a resource. To
eliminate network effects, the test client and server ran on
the same machine as the CDS server. The number of
resources in the CDS database scaled from 100 to 10000,
and the average time for the clients to look up a name was

calculated as the database size changed. Two cases were
examined:

In the first case, a random name generator produced
resource names to be used to populate the namespace.
These random names consisted of capital letters (A-Z) and
were between 8 and 16 characters long. The nameserver
was populated, and 10% of the names were searched for.
The average time per channel was calculated based on the
searches for this fraction of the total database. This test
was repeated with three different namespace sizes:

Table 1: DCE lookup time for random names

Namespace Size Average Time (s)
100 .085
1000 .069
10000 .125

 It can be seen from the table that when the namespace
size is increased from 1000 to 10000, the lookup time (in
seconds) approximately doubles. The increase in
performance when moving from a 100 to 1000 name
database is considered to be the result of the CDS cache,
in which the results of searches for names are stored. This
reduces the number of times that a client must go to the
server for the same information.
 In the second case, a sequential name generator
generated names consisting of a prefix followed by a
number between 1 and 5000. Again, multiple namespace
sizes were used, and 100 channels were looked up in order
to determine average lookup time.

Table 2: DCE lookup time for sequential names

Namespace Size Average Time (s)
1000 .091
2000 .097
3000 .101
4000 .118
5000 .119

 From this, it can be seen that the searching time does not
appreciably change when the namespace size grows.

3 Overview of the CA nameserver

 Jefferson Lab is presently using a new nameserver,
developed on site, to locate resources within the control
system for the main accelerator. The control system
consists of approximately 160,000 channels distributed
across 70 control servers. The new nameserver maintains
information for all these channels.
 This nameserver is specifically designed to work with
EPICS. Only information needed to locate EPICS channels
is stored in this nameserver. At present, each channel has
a pointer associated with it that references the data
structure for the server which that channel resides on.
Each server's data structure contains the IP address, port
number, and CA (Channel Access - the network protocol
used by EPICS) version number. [6]

 EPICS utilities such as MEDM or BURT interface to the
new nameserver using an adapter layer. This layer can be
linked in at compile time, and intercepts the CA search
commands. When the results are returned from the
nameserver the adapter responds accordingly. If the
nameserver found information about that channel, then the
channel is connected directly, eliminating the broadcast
search step. If the nameserver has no information for the
channel, the existing EPICS broadcast method is
employed. This method has the advantage of allowing any
EPICS application using CA to be easily compiled to use
the nameserver. The adapter locates the nameserver using
an environment variable which defaults to a preset value.
This allows test applications or small groups to work with
servers other than the main nameserver.
 The nameserver and the adapter communicate using the
CLIP protocol as implemented by CDEV [7]. This protocol
has been used for many applications at Jefferson Lab and
has proven to be highly reliable. A lightweight interface
was used to minimize the size of both the adapter and the
nameserver. As channels are requested by the CA client,
the channels are bundled in groups of 40 (or less if the
application requires less) and sent to the nameserver. The
nameserver searches its database and sends a
corresponding number of replies. The reply is either the
information needed for a connection (IP address, port, CA
version number), or an explicit "Don't Know" reply. This
allows the application to quickly revert to the original
broadcast method if the nameserver has no information on
that particular channel. Additionally, error handling
routines ensure that the application will revert to the
broadcast method if the server is unavailable.
 The nameserver is implemented using a sparsely
populated hash table. If the occupancy factor of the table
exceeds 50%, the table is automatically resized to increase
performance. A custom memory mapping algorithm is
used, allowing the server to be much smaller that it would
be using conventional C++ allocation (the new command).
The executing nameserver, with 160,000 channels, uses
approximately 8MB of space, including space for network
buffers.
 The nameserver can be populated either by loading a file
or using CLIP packets sent by a registration program to the
nameserver. At Jefferson Lab, each IOC writes a list of its
channels at boot time. These channels are then uploaded
to the nameserver by the registration program.0

3.1 CA nameserver experiment and results

 To test the speed of the nameserver, a CA test program
was created. This program would connect to between 1
and 23000 channels to test the speed of the nameserver. It
was discovered that as the number of channels increased,
the speed per channel increased, indicating that much of
the time is in overhead related to connection management
etc. Several trials were completed, and the average time

per channel was calculated (all these trials used the
operational database, with 160,000+ channels loaded)
 As can be seen, this nameserver is able to resolve
channels very rapidly, even with a very large namespace.
 In use, the programs modified to use the nameserver
appear to run identically to those that do not use the
nameserver. If however, IOC load is monitored while
running the old and new versions, requests by the new
version do not generally affect IOC load. When requesting
channels, the old method routinely causes the available
processing power (CPU power not being used for other
tasks) to drop by 10-15%, and for large request groups on
heavily loaded IOCs, can cause 50% drops.

Table 3: CA Nameserver random name lookup time

Channels requested Average time/chan (s)
1 .22
100 .004
1000 .001
23000 8x10-4

4 Conclusion

 The three methods discussed here all have advantages
and disadvantages. The original EPICS method of using
broadcasts eliminates the need to maintain a centrally
managed repository and does not require a separate
executable to be run. On the other hand, the two centrally
managed methods eliminate the load imposed on IOCs by
search requests.
 It is clear from the numbers presented that the CA
Nameserver is able to locate channels more rapidly than
DCE CDS. On average, DCE CDS is approximately 100
times slower than the CA Nameserver, and would most
likely be more difficult to integrate with CA. On the other
hand, DCE offers the advantage of having distributed,
redundant servers, which could increase reliability.

References

[1]. D. Gurd (LANL), S. Lewis (LBL), B. McDowell
(ANL), W. Watson (JLAB) “Distributed Enhance-
ments to EPICS”

[2] “Introduction to OSF DCE” Open Software
Foundation

[3] “DCE FAQ” (www.osf.org/dce/faq-mauuney.html)
[4] J. Shirley, W. Hu, I. Magid “Guide to writing DCE

Applications” (O′eilly & Associates, Inc., 1994)
[5] W. Rosenberry, D. Kenney, G. Fisher “Understanding

DCE” (O′eilly & Associates, Inc., 1992)
[6] J. Hill, EPICS R3.12 Channel Access Reference

Manual” (Online publication, 1995)
[7] W. Watson, J. Chen, D. Wu, W. Akers

“CDEV Reference Guide” , Jefferson Lab,
(www.jlab.org/cdev/doc_1.5/cdevReference.html)

