Charm quark system on the physical point in 2+1 flavor lattice QCD

Yusuke Namekawa for PACS-CS Collaboration

University of Tsukuba, Japan namekawa@ccs.tsukuba.ac.jp

"Lattice QCD confronts experiment" Nov. 4 - 6, 2010

1 Motivation

- Determine fundamental parameters in the standard model.
- Check the effectiveness of heavy quark action on the lattice.

2 Simulation setup

We use $N_f = 2 + 1$ configurations on the physical point. PACS-CS, 2009

- Action : Iwasaki gauge + O(a) improved Wilson fermion for light sea quarks + relativistic heavy quark(Tsukuba-type) for valence charm quark
- Lattice size : $32^3\times 64~(L=3~{\rm fm},~a^{-1}=2.194(10)~{\rm GeV}~(\beta=1.90))$
- Quark masses : on the physical point (i.e. $m_{\pi} = 135 \text{ MeV}$) $m_{ud}^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 3.0(3) \text{ MeV}, m_s^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 93(1) \text{ MeV}$
 - ♦ Inputs for m_{ud}, m_s, a : $m_{\pi} = 135 \text{ MeV}, m_K = 498 \text{ MeV}, m_{\Omega} = 1673 \text{ MeV}$
 - ♦ Input for m_{charm} : $\overline{m}(1S) := \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi}) = 3068 \text{ MeV}$

$\kappa_{ m ud}$	$\kappa_{ m s}$	$\kappa_{ m charm}$	$\operatorname{conf}(\operatorname{MD} \operatorname{time})$
0.13779625	0.13663375	0.10959947	80(2000)

3 Our relativistic heavy quark action

Since the charm quark is not too heavy, relativistic approach is needed.

• The relativistic heavy quark action reduces mass corrections $O((ma)^n, \forall n)$ to $O(\alpha_s^2 f(ma)(a\Lambda_{QCD}))$ where f is smooth around ma = 0. S.Aoki et al, 2001

$$\begin{split} S_{RHQ} &= \sum_{x,y} \bar{q}(x) D(x,y) q(y), \\ D(x,y) &\equiv \delta_{x,y} - \kappa_{charm} \left\{ (1-\gamma_4) U_4(x) \delta_{x+4,y} + (1+\gamma_4) U_4^{\dagger}(x) \delta_{x,y+4} \right. \\ &+ \left. \sum_i \left((r_s - \nu \gamma_i) U_i(x) \delta_{x+i,y} + (r_s + \nu \gamma_i) U_i^{\dagger}(x) \delta_{x,y+i} \right) \right\} \\ &- \delta_{x,y} \kappa_{charm} \left\{ C_{SW}^s \sum_{i < j} \sigma_{ij} F_{ij} + C_{SW}^t \sum_i \sigma_{4i} F_{4i} \right\}. \end{split}$$

4 Heavy-heavy and heavy-light spectrum

• Heavy-heavy and heavy-light spectrums agree with experiment.

(jueut)

5 Hyperfine splitting of charmonium

- Hyperfine splitting of charmonium agrees with experiment in 2 $\sigma.$
 - \diamondsuit Disconnected diagram has not been included, yet.
 - \diamondsuit Continuum extrapolation has not been performed, yet.

		₩ experiment	
-		$ \longrightarrow N_j = 2 + 1, \text{NP} (a^{-1} = 2 \text{ GeV}) $	
-	-∆-	<i>N_j</i> =2,pole (<i>a</i> ⁻¹ =2 GeV)	
-	∇	N _f =0,pole (a ⁻¹ =2 GeV)	
06	0.08	0.10 0.12 0.14 0.16 <i>m_{I/w} - m_{pc}</i> [GeV]	

6 Charm quark mass

- Our result for the charm quark mass is consistent with HPQCD value.
 - \diamondsuit Continuum extrapolation has not been performed, yet.
 - \diamondsuit Our error is mainly from the scale determination and the non-perturbative renormalization factor.

7 Decay constants and CKM matrix elements

- Our decay constants agree with experiment in 2 $\sigma.$
- CKM matrix values are consistent. The errors are mainly from $\Gamma^{exp}(D \to l\nu)$.

8 Conclusion

- Charm quark mass and CKM matrix elements are obtained in a few percent accuracy.
- Mass spectrums and decay constants are reproduced well.
 - \diamondsuit Systematic errors are still large.
 - \diamondsuit Continuum extrapolations will be performed.