The order of the deconfinement phase transition in a heavy quark region - Dependence on the number of flavors -

WHOT-QCD Collaboration:

Phase diagram

The order of the deconfinement phase transition is a fundamental topic. The order of the transition depends on the quark mass.

We investigate the end point of 1st order transition in the $(m_{\rm ud}, m_{\rm s})$ plane of $N_{\rm f} = 2 + 1$ by using lattice QCD simulation. In this study, we " discuss it in a heavy quark mass region.

 β : coupling

Probability distribution function

Probability distribution function is useful to identify the order of a phase transition.

Probability distribution function:

$$w(P') = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi}\delta(P(U) - P')e^{-S(\beta,\kappa)}$$

* An effective potential:

$$V(P) = -\ln w(P)$$

* Nature of the potential At a transition point The shape of the potential 2nd /crosśover ⇔ order of the transition double-well : 1st order V(P)1st order single well : 2nd/crossover dV(P)dP The derivative of the potential Monotonically S-shape increasing shape Turning point in the two shapes $d^2V(P)$ dP^2 ⇔ End point of 1st order PMinimum Minimum is 0/positive.

*N*_f=2+1 phase diagram

The $N_{\rm f}$ - dependence appears in the quark determinant:

$$R(P',\kappa) = \frac{\int \mathcal{D}U\delta(P(U) - P') \left[\left\{ \det M(U,\kappa_{\rm ud}) \right\}^2 \det M(U,\kappa_{\rm s}) \right]}{\int \mathcal{D}U\delta(P(U) - P')}$$

We can consider the many flavors case by replacing into $\left[\det M(U,\kappa)\right]^{N_{\mathrm{f}}}$.

Lattice setup

• Action : Standard wilson fermion (hopping parameter $\kappa \approx m_q^{-1}$)

and Plaquette action

- HeatBath /

 Simulation Setup
 Simulation Setup
- The det $M(\kappa)$ is evaluated by using a hopping parameter expansion. The LO of the quark determinant factor has a

coefficient $N_{
m f}\kappa_{
m ep}$. The shape of the potential is unchanged when the coefficient is constant.

	β	Confs
	5.68	100,000
	5.685	430,000
	5.69	500,000
s	5.6925	670,000
	5.7	100,000

Result

* The order of the deconfinement phase transition 1st order dV(P)1000 dPcrossover -1000 -3000 $\kappa_{ep} = 0.068(7)$ for $N_f = 2$ \mathcal{K}_{ep} 0.55 0.546 0.547 0.548 0.549 0.1PCrossover * The $N_{\rm f} = 2+1$ phase diagram 1st order ⊻[∞]0.05 צ The result is consistent with the result of Z(3) model

* Reweighting method (i) β -Direction : To get dV/dP in a wide range $dV(P,\beta)$ $\frac{dV(P,\beta)}{dP} = \frac{dV(P,\beta')}{dP} - \frac{6N_{\rm site}(\beta - \beta')}{6N_{\rm site}(\beta - \beta')}$

(ii) *<u>к-Direction</u>*: To evaluate the end point $V(P,\kappa,\beta) = -\ln R(P,\kappa) + V_0(P,\beta)$ Reweighting term : $R(P', \kappa) = \frac{\int \mathcal{D}U\delta(P(U) - P')[\det M(U, \kappa)]}{\int \mathcal{D}U\delta(P(U) - P')}$

The change of the order is caused by dynamical quark effect which is included by the quark determinant factor.

$$V_0(P',\beta) = -\ln\left[\int \mathcal{D}U\delta(P(U) - P')e^{-S_g(\beta)}\right]$$
 HS talk in Lattice2010

reported by Alexandrou et al(1990).

Summary & Future prospect

- i. The κ_{ep} value decreases as N_{f} increases.
- ii. The method can be applied to the case of non-

Zero μ . S. Ejiri's talk

iii. The method of probability distribution function to identify the order of the transition works well.