Chiral logs in twisted mass Lattice QCD with large isospin breaking

Oliver Bär Humboldt University Berlin

Lattice QCD confronts experiment Japanese-German seminar 2010 Mishima, October 4 2010

🖢 Twisted mass term: $~m+i\sigma_{3}\mu$

Advantages

• Dirac operator bounded from below: $D^{\dagger}D \ge \mu^2$

- Twisted mass renormalizes multiplicatively only
- Simplified renormalization in some cases
- Automatic O(a) improvement at maximal twist
- Drawbacks
 - Tuning to maximal twist needed

 $\Delta_{\pi}^2 = M_{\pi^0}^2 - M_{\pi^{\pm}}^2 = \mathcal{O}(a^2)$

Frezzotti, Rossi `04

Frezzotti, Rossi `04

Frezzotti et al `01

- Splitting is of $O(a^2)$ and vanishes in the continuum limit
- In practice rather large
 - **O** $N_f = 2, \ a \approx 0.086 \text{fm}$ Urbach (ETMC) `07 $M_{\pi^{\pm}} = M_{\pi^{\pm}}$ $\approx 0.86 \approx 450 \text{MeV}$ $\approx 0.82 \approx 310 \text{MeV}$

O $N_f = 2 + 1 + 1$, $a \approx 0.078 \text{fm}$	M_{π^0}/M_{π^\pm}	$M_{\pi^{\pm}}$
Baron et al (ETMC) '10	pprox 0.77	$\approx 400 \mathrm{MeV}$
	≈ 0.54	$\approx 320 \mathrm{MeV}$

• Worry: A large mass splitting might affect the chiral extrapolation

• $N_f = 2$ continuum ChPT result for decay constant Gasser, Leutwyler 83

$$f_{\pi,\text{NLO}} = f\left(1 - \frac{1}{16\pi^2 f^2} \left(M_0^2 \ln \frac{M_0^2}{\Lambda_4^2}\right)\right) \qquad M_0^2 = 2Bm$$

• Question: What pion mass in case of a large mass splitting ?

- a) $M_0 \xrightarrow{?} M_{\pi^{\pm}}$ b) $M_0 \xrightarrow{?} M_{\pi^0}$ c) more complicated?
- Chiral extrapolation may depend substantially on the exact answer !
- Same question for other observables
- Fitresults for the GL coefficients may also depend substantially on the precise I-loop result

- Another aspect: Finite volume corrections
 - I-loop continuum ChPT predicts FV corrections $\propto \exp(-M_0 L)$
 - Same question here: What mass ?
 - Using the "wrong" mass may underestimate the FV corrections significantly

Common wisdom: Corrections small for $M_0 L \sim 4$ large for $M_0 L \sim 2$

- Desirable: Analytic results taking into account different masses in the logs
- Framework: twisted mass Wilson ChPT (tmWChPT)
- In the following: I-loop results for
 - the charged pion mass
 - O the mass splitting
 - O decay constant of the charged pion
- Last part of the talk: Confront these results with recent data from ETMC
- Reference: arXiv: 1008.0784 [hep-lat] (to be published in PRD)

Sharpe, Singleton '98 ...

Twisted mass Wilson ChPT basics

- tm WChPT = low-energy effective theory of twisted mass lattice QCD
- LO Effective Lagrangian $\mathcal{L}_{ ext{LO}} = \mathcal{L}_2 + \mathcal{L}_{a^2}$

$$\mathcal{L}_2 = \frac{f^2}{4} \langle \partial_\mu \Sigma \partial_\mu \Sigma^\dagger \rangle - \frac{f^2 B}{2} \langle \Sigma M^\dagger + M \Sigma^\dagger \rangle$$

$$\mathcal{L}_{a^2} = \frac{f^2}{16} c_2 a^2 \langle \Sigma + \Sigma^{\dagger} \rangle^2$$

- $\langle \ldots \rangle : \operatorname{tr}(\ldots)$ $f, B, c_2 :$ low-energy constants (LECs) M : quark mass matrix
- Why $O(a^2)$ term at LO? little later ...

Mass matrix and maximal twist

- Quark mass matrix: $M = m + i\sigma_3 \mu$ $N_f = 2$ ChPT
- Tuning to maximal twist:
 PCAC mass condition $m_{PCAC} = 0 \rightarrow m = 0$ at LO
 (used by ETMC)
 Aoki, OB `04
 Sharpe, Wu `04
 Aoki, OB `06

In the following: Maximal twist only Arbitrary twist angles more complicated

Tree-level pion masses

charged pion $M_{\pi^{\pm}}^2 = 2B\mu$ neutral pion $M_{\pi^0}^2 = 2B\mu + 2c_2a^2$ Scorzato `04 mass splitting $\Delta_{\pi}^2 \equiv M_{\pi^0}^2 - M_{\pi^{\pm}}^2 = 2c_2a^2$

neutral pion lighter than charged one for $c_2 < 0$ (1st order phase transition scenario)

Münster `04 Sharpe, Wu `04

• $N_f = 2 + 1 + 1$ ETMC data shows

$$\frac{|2c_2a^2|}{2B\mu} = \frac{M_{\pi^{\pm}}^2 - M_{\pi^0}^2}{M_{\pi^{\pm}}^2} \approx \begin{cases} 0.41\\ 0.71 \end{cases}$$

→ $O(a^2)$ term as important as mass term → take $O(a^2)$ term at LO (so-called LCE regime)

I-loop ingredients

$$G^{ab}(p^2) = \frac{\delta^{ab}}{p^2 + M_{\pm}^2}$$
 $a, b = 1, 2$

$$G^{33}(p^2) = \frac{1}{p^2 + M_0^2}$$

I-loop ingredients

Vertices: Expand LO Lagrangian in the pion fields

continuum vertex new O(a^2) vertex

- I loop calculation almost as in continuum, but
 - keep track of different masses in propagators
 - one more (trivial) diagram

Results

Charged pion mass

$$M_{\pi^{\pm},\text{NLO}}^2 = M_{\pm}^2 \left(1 + \frac{M_0^2}{32\pi^2 f^2} \ln \frac{M_0^2}{\Lambda_3^2} + C_{M_{\pm}} a^2 \right)$$

$$\uparrow \qquad \uparrow$$
LECs of the NLO Lagrangian

Properties

- Neutral pion mass in the chiral log !!!
- Standard Gasser-Leutwyler result recovered in the continuum limit

Results

$\Xi_3, C_{\!\Delta}$: LECs

$$\Delta M_{\pi,\text{NLO}}^2 = 2c_2 a^2 \left(1 - \frac{M_0^2}{8\pi^2 f^2} \ln \frac{M_0^2}{\Xi_3^2} + C_\Delta a^2 \right) + \frac{M_{\pm}^2}{16\pi^2 f^2} \left(M_{\pm}^2 \ln \frac{M_{\pm}^2}{\Lambda_3^2} - M_0^2 \ln \frac{M_0^2}{\Lambda_3^2} \right)$$

Properties

- Chiral logs with charged and neutral pion mass
- Vanishes in the continuum limit (as it should)

Results

Decay constant of the charged pion

$$f_{\pi,\text{NLO}} = f\left(1 - \frac{1}{32\pi^2 f^2} \left(M_{\pm}^2 \ln \frac{M_{\pm}^2}{\Lambda_4^2} + M_0^2 \ln \frac{M_0^2}{\Lambda_4^2}\right) + C_f a^2\right)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

LECs of the NLO Lagrangian

Obtained with
("indirect method")
$$f_{\pi} = \frac{2\mu}{M_{\pi^{\pm}}^2} G_{\pi}$$
 $G_{\pi} = |\langle 0|P^1(0)|\pi^1(\vec{p})\rangle|$

Properties

- Arithmetic mean of the two chiral logs
- Standard result in the continuum limit
- Same result if matrix element of the (physical) axial vector is computed

Finite volume corrections

- So far all results in infinite volume
- Finite volume corrections are easily included Gasser, Leutwyler `87 Modifications in the propagators only
- Example: Finite spatial volume with extent L needs replacement Bernard `02

$$\ln \frac{M^2}{\Lambda^2} \rightarrow \ln \frac{M^2}{\Lambda^2} + \tilde{g}_1(ML) \qquad \begin{array}{c} \text{modified} \\ \text{Bessel function} \\ \tilde{g}_1(ML) = \frac{4}{ML} \sum_{\vec{n} \neq 0} \frac{K_1(|\vec{n}|ML)}{|\vec{n}|} \\ |\vec{n}| = \sqrt{n_1^2 + n_2^2 + n_3^2} \end{array}$$

Similarities with Staggered ChPT

- Taste symmetry breaking \rightarrow Mass splitting of O(a^2)
- Large for MILC lattices with Asqtad quarks: $m \sim a^2$
- Take $O(a^2)$ terms at LO in staggered ChPT \rightarrow Modified chiral logs
 - 1-loop mass for the *Goldstone pion* involves chiral log with the *taste singlet pion*
 - 1-loop decay constant of the *Goldstone pion* involves the average chiral log with *all taste partners*

Aubin, Bernard `03

Question

Are these new results relevant in practice ?

► Analyze recent ETMC data with new formulae

- $N_f = 2 + 1 + 1$ twisted mass LQCD at maximal twist
- Data for decay constant and charged pion mass at
 - O 2 lattice spacings
 - 6 resp. 5 quark masses such that
 - 22 data points in total
- Lattice size:
- Data for pion mass splitting gives
 - expect non-neglibible effect

 $a \approx 0.086 \mathrm{fm}$ $a \approx 0.078 \mathrm{fm}$ $270 \mathrm{MeV} \lesssim M_{\pm} \lesssim 510 \mathrm{MeV}$

 $1.9\,{\rm fm} \lesssim L \lesssim 2.8\,{\rm fm}$

$$\frac{|2c_2a^2|}{2B\mu} \approx \begin{cases} 0.41\\ 0.71 \end{cases}$$

at $a \approx 0.078 {
m fm}$

Results of a combined chiral fit

	Fit (both β values)	I
	Fit range: $a\mu_{0,\min}$	0.0025
	$a\mu_{0,\max}$	0.01
	maximal $M_{\pi^{\pm}}~({\rm MeV})$	512
it parameter:	$2B_0a$	4.57(11) $4.39(11)$
4 continuum	$f ({\rm MeV})$	111.3(2.2) $116.2(2.5)$
ChPT params	\overline{l}_3	3.44(7) 3.09(13)
•	\overline{l}_4	4.69(4) 4.62(5)
2	$-2c_2a^2$ (MeV ²)	$-\star$ [187(19)] ²
3 nonzero	$C_{M\pm}a^2$	0.19(2) = 0.19(3)
<i>a</i> corrections	$C_f a^2$	0.10(2) $0.13(2)$
	$n_{\rm data}$	22 22
	$\chi^2/n_{\rm dof}$	27.6/16 $20.7/15$
	Q	0.12 0.42

 $\star c_2 = 0$

Results of a combined chiral fit

Observations

- Quality of the fit slightly better (lower χ^2/dof)
- negative value for $2c_2a^2 \approx -(200 \text{ MeV})^2$

data prefers neutral pion lighter than the charged one

O From the fit: $0.15 \lesssim \frac{-2c_2a^2}{2B_0\mu_0} \lesssim 0.60$

agrees well with estimate from the measured values

Results for the LECs depends on the data included in the fit ...

Results for decay constant

Results for the GL coefficients

Results of a combined fit

- Observations 2: Central values for
 - f seem systematically higher
 - NLO LECs seem systematically smaller

if pion mass splitting is included in the chiral logs

Needs to be corroborated (improve error analysis !)

Conclusions and Outlook

- Current twisted mass simulations have a sizable mass splitting
- WChPT predicts modified chiral logs in this case
- Analytic expressions available for
 - Pseudoscalar masses
 - O Decay constant
- Modifications affect chiral extrapolation and extraction of LECs
- Similar modifications in other observables?
 - Kaon mass and decay constant

Ο ...