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 Density of state method + Reweighting method
 Endpoint of the first order phase transition in the heavy quark mass region



Problems in simulations at 0
 Problem of Complex Determinant at 0

 Boltzmann weight: complex at 0
 Monte-Carlo method is not applicable.
 Configurations cannot be generated.

 Density of state method (Histogram method)
X: order parameters, total quark number, average plaquette etc.

 Expectation values

 The density of state method is useful if we combine the reweighting method.
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Order of phase transitions
Distribution function (histogram)

• First order phase transition
Two phases coexists at Tc

e.g. SU(3) Pure gauge theory

• Average plaquette (1x1 Wilson loop): P

• Partition function

• Effective potential
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SU(3) Pure gauge theory
QCDPAX, PRD46, 4657 (1992)
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-dependence of the effective potential
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1st order phase transition

Critical point ,,TXV

Crossover

Correlation length: short
V(X): Quadratic function

Correlation length: long
Curvature: Zero

Two phases coexist
Double well potential
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X: order parameters, total quark number, average plaquette etc.



mass-dependence of the effective potential
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Correlation length: short
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1st order phase transition

Two phases coexist
Double well potential
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Plaquette distribution function

Change: 1(T) 2(T)

Weight:

Potential:
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Curvature of Veff: independent of .
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Shape of dVeff/dP: independent of . Easy to identify 1st order phase transition.

 12site6 N

P: Average plaquette (1x1 Wilson loop)

1st order phase transition
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Reweighting method for quark part (S.E., Phys.Rev.D77, 014508(2008))

• Distributions of plaquette P (1x1 Wilson loop for the standard action)
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Effective potential:

(Weight factor at 

R(P,m,): independent of ,  R(P,m,) can be measured at any .
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1st order phase transition?
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Reweighting from quenched simulations
WHOT-QCD Collaboration, H. Saito

• Order of phase transition near the quenched limit
– First order (mq) crossover (small mq)

• Quenched simulations + Reweighting method
– detM is estimated by a hopping parameter expansion.

• Action: plaquette gauge action + Wilson quark action
• Lattice size: Simulation points: 5  points
• Derivative of the effective potential

• Effective potential in a wide range of P: required.
– We combine the data of dVeff/dP obtained at different 
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Calculation of the effective potential at m=
Effective potential in a wide range of P: required.

Plaquette histogram Derivative of Veff at =5.69

dVeff/dP is adjusted to =5.69, using

These data are combined by taking the average.
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4th order Binder cumulant
• Normal (Gaussian distribution)

• 1st order transition
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Measurement of W(X) and B4 is essentially equivalent.

Distribution function in a wide range of P: required for the calculation of B4.



Quark determinant in the heavy quark mass region

• Taylor expansion around K0

• We adopt K0=0 (quenched limit), then

is the hopping term.
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Plaquette term can be absorbed into .



Effective potential near the quenched limit

• K-dependence is calculated by the reweighting.

• First order transition at K = 0 changes to crossover at K > 0.

Quenched
Simulation
(mq=)

Quark mass
smaller crossover

first order

K~1/mq for large mq

dP
dVeff

lattice,4243  5  points, Nf=2



Endpoint of the first order phase transition

Endpoint of the 1st order transition
Nf=1: Kep=0.081(8)
Nf=2: Kep=0.068(7)
Nf=3: Kep=0.061(6)

Cf. Nf=1 consistent with the effective Z(3) model
[C. Alexandrou et al., PRD60, 034504 (1999)]

Curvature of Veff for Nf=2
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Endpoint of 1st order transition in 2+1 flavor QCD

The critical line is described by
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Finite density QCD

• Isospin chemical potential (Nf=2), u= d. Complex phase: canceled.

– Endpoint:

• Complex phase for real chemical potential the sign problem
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• Sign problem: If changes its sign,

• Cumulant expansion

– Odd terms vanish from a symmetry under    
Source of the complex phase

If the cumulant expansion converges, No sign problem.
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Avoiding the sign problem
(SE, Phys.Rev.D77,014508(2008))
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cumulants 0 0

<..>F,P: expectation values fixed F and P.
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: complex phase



Convergence of the cumulant expansion
• Because  ~ O(),

– The cumulant expansion is a power expansion of .
• Applicable at low density.

– If one takes into account , the truncation error
does not affect up to

• Gaussian distribution function
– The cumulants vanish except for
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Chemical potential in the heavy quark mass region

• Average of the complex phase:

• Reweighting factor:

• The phase effect can be absorbed into  and K.
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Preliminary

Effect from the complex phase

• is large at R<0.

• W()=R()W(0) is suppressed by R and

the large at R<0.

• is small at R>0.
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Effect from the complex phase
• Slope of changes Kep.
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Critical surface in the (mud, ms, ) space

• The study for the light quark mass region is important.
• This method is applicable in the light quark mass region:

Isospin chemical potential simulations + complex phase effect.



Summary
• We studied the quark mass and chemical potential dependence

of the nature of QCD phase transition in the heavy quark mass
region.

• Density of state method is used to identify the order of the phase
transition.

• To avoid the sign problem, the method based on the cumulant
expansion of is useful.

• The study in the light quark mass region is important applying
this method.


