Progress and challenges in Hadron structure calculations on the lattice

Overview

QCDSF/UKQCD $n_f=2$ improved Wilson action parameters

- N_f = 2 dynamical Wilson - fermions with (NP) clover - improvement
- only connected contributions

- lattice spacing fixed using $m_N \leftrightarrow r_0 = 0.467 \text{ fm}$ - three projectors $\widetilde{\Gamma}_{unpol} = \frac{1}{2}(1 + \gamma_0),$ $\widetilde{\Gamma}_{1,2} = \frac{1}{2}(1 + \gamma_0)\gamma_5\gamma_{1,2}$ - three sink - momenta p' = (0,0,0), (1,0,0), (0,1,0)- non - perturbative operator renormalization

#	b	k	L	a∨fm⊌	L∨fm⊌	mp VGeV♥	mpL
1	5.20	0.13420	16	0.0856	1.37	1.348	9.4
2	5.20	0.13500	16	0.0856	1.37	0.956	6.6
3	5.20	0.13550	16	0.0856	1.37	0.67	4.7
б	5.25	0.13460	16	0.0794	1.27	1.225	7.9
7	5.25	0.13520	16	0.0794	1.27	0.949	6.1
8	5.25	0.13575	24	0.0794	1.91	0.635	6.1
9	5.25	0.13600	24	0.0794	1.91	0.457	4.4
11	5.29	0.13400	16	0.0753	1.2	1.511	9.2
12	5.29	0.13500	16	0.0753	1.2	1.102	6.7
13	5.29	0.13550	12	0.0753	0.9	0.945	4.3
14	5.29	0.13550	16	0.0753	1.2	0.871	5.3
15	5.29	0.13550	24	0.0753	1.81	0.857	7.8
16	5.29	0.13590	12	0.0753	0.9	0.883	4.
17	5.29	0.13590	16	0.0753	1.2	0.66	4.
18	5.29	0.13590	24	0.0753	1.81	0.627	5.7
19	5.29	0.13620	24	0.0753	1.81	0.407	3.7
21	5.29	0.13632	32	0.0753	2.41	0.282	3.4
22	5.29	0.13632	40	0.0753	3.01	0.271	4.1
23	5.29	0.13640	40	0.0753	3.01	0.17	2.6
24	5.40	0.13500	24	0.0672	1.61	1.183	9.7
25	5.40	0.13560	24	0.0672	1.61	0.917	7.5
26	5.40	0.13610	24	0.0672	1.61	0.648	5.3
27	5.40	0.13625	24	0.0672	1.61	0.558	4.6
28	5.40	0.13640	24	0.0672	1.61	0.451	3.7
29	5.40	0.13640	32	0.0672	2.15	0.441	4.8
30	5.40	0.13660	32	0.0672	2.15	0.255	2.8
31	5.40	0.13660	48	0.0672	3.23	0.233	3.8

LHPC simulation details

- mixed action approach: DW fermions on a Asqtad staggered sea (MILC) for N_f=2+1; including HYP-smearing - L_s=16, m_{res} \bullet 0.1m_q - a ~ 0.124 fm; volumes of ~(2.5 and ~3.5 fm)³

- two sink momenta P'=(0,0,0), (-1,0,0)

Light $m_{\rm sea}^{\rm asqtad}$		Volume Ω	$(am)_{\pi}$	$(af)_{\pi}$	$(am)_N$	m_{π} [MeV]	f_{π} [MeV]	m_N [MeV]
	0.007	$20^3 \times 64$	0.1842(7)	0.0657(3)	0.696(7)	292.99(111)	104.49(45)	1107.1(111)
	0.010	$28^3 \times 64$	0.2238(5)	0.0681(2)	0.726(5)	355.98(80)	108.31(34)	1154.8(80)
	0.010	$20^3 \times 64$	0.2238(5)	0.0681(2)	0.726(5)	355.98(80)	108.31(34)	1154.8(80)
	0.020	$20^3 \times 64$	0.3113(4)	0.0725(1)	0.810(5)	495.15(64)	115.40(23)	1288.4(80)
	0.030	$20^3 \times 64$	0.3752(5)	0.0761(2)	0.878(5)	596.79(80)	121.02(34)	1396.5(80)
	0.040	$20^3 \times 32$	0.4325(12)	0.0800(5)	0.941(6)	687.94(191)	127.21(78)	1496.8(95)
	0.050	$20^3 \times 32$	0.4767(10)	0.0822(4)	0.991(5)	758.24(159)	130.70(67)	1576.3(80)

- N_f=2+1 DW fermions (RBC/UKQCD configs) - volume of ~(2.7 fm)³

NP-operator renormalization

$L_s^3 \times L_t$	$a [\mathrm{fm}]$	T	#	am_l/am_h	$am'_{ m res} imes 10^3$	am_{π}	m_{π} [MeV]	aF_{π}	F_{π} [MeV]	aM_N	M_N [MeV]
$24^3 \times 64$	0.114	9	3208	0.005/0.04	3.15(1)	0.1901(3)	329(5)	0.06100(11)	105.5(1.7)	0.657(4)	1136(20)
$32^3 \times 64$	0.084	12	4928	0.004/0.03	0.665(3)	0.1268(3)	297(5)	0.04400(15)	102.9(1.8)	0.474(4)	1109(21)
$32^3 \times 64$	0.084	12	7064	0.006/0.03	0.663(2)	0.1519(3)	355(6)	0.04571(09)	107.0(1.8)	0.501(2)	1172(21)
$32^3 \times 64$	0.084	12	4224	0.008/0.03	0.668(3)	0.1724(3)	403(7)	0.04755(18)	111.3(2.0)	0.522(2)	1221(21)

Ph. Hägler, LQCD confronts exp 2010, Mishima

Proton mean square radii – Dirac isovector radius

Nucleon isovector anomalous magnetic moment

 $\kappa = F_2(Q^2 \to 0) = \mu - F_1(0)$

(anomalous) magnetic moment

Proton mean square radii – Pauli isovector radius

Nucleon axial vector coupling constant

$\langle P|\bar{u}\gamma_{\mu}\gamma_{5}u - \bar{d}\gamma_{\mu}\gamma_{5}d|P\rangle = g_{A}\bar{U}(P)\gamma_{\mu}\gamma_{5}U(P)$

Nucleon axial vector coupling constant

Tensor charge +1 $g_T = A_{T10}(0) = \int dx \delta q(x) = \langle 1 \rangle_{\delta q} - \langle 1 \rangle_{\delta \overline{q}}$ $\langle P|ar{q}i\sigma_{\mu u}q|P angle=g_Tar{U}(P)i\sigma_{\mu u}U(P)$ $\overline{\text{MS}}$ at 4 GeV² 1.2 đ 1.0 $g_T^{u-d} = \langle 1 \rangle_{\delta u-\delta d}$ **8.0** preliminary QCDSF 2010 (J. Zanotti et al.) 0.6 finite size effects(?) (under investigation, QCDSF Ohtani et al.) Anselmino et al.'08 米 0.4 $\beta = 5.20$ 0 $\beta = 5.25$ 0.2 $\beta = 5.29$ $\beta = 5.40$ 0.0 0.2 0.6 1.2 0.4 0.8 0 0 1.0 m_{π}^2 [GeV²] opportunity for lattice prediction at physical point direct measurement at PANDA/FAIR?

Ph. Hägler, LQCD confronts exp 2010, Mishima

Generalized parton distributions (GPDs) in experiment

excellent opportunity for lattice QCD to provide independent/complimentary information

Higher (xⁿ⁻¹-) moments of GPDs

correlations in x and t

LHPC n_f=2+1 mixed; arXiv:1001.3620 (updating PRD 2008, 0810.1933)

Pion mass dependence of generalized radii for n>1

$$\langle P' | \bar{q} \gamma^{\{\mu} D^{\nu\}} q | P \rangle = \langle P' | T_q^{\mu\nu} | P \rangle = U(P') \Big\{ \gamma^{\{\mu} P^{\nu\}} A_{20}(t) - \frac{i \Delta_{\rho} \sigma^{\rho \{\mu} P^{\nu\}}}{2m_N} B_{20}(t) + \frac{\Delta^{\mu} \Delta^{\nu}}{m_N} C_{20}(t) \Big\} U(P)$$

Form factors of the energy momentum tensor

Covariant BChPT calculation by Dorati, Gail, Hemmert NPA 2008

Quark angular momentum

J_u , J_d template figure

*[non-singlet, connected only; add. uncertainties due to chiral extrapolations, renormalization] Ph. Hägler, LQCD confronts exp 2010, Mishima

Momentum fraction of quarks in the nucleon

substantial systematic uncertainties: renormalization, discretization errors, excited state contamination?

Conclusions

despite significant progress in lattice QCD studies of hadron structure still a long way to go

work done in collaboration with/based on results from

B. Bistrovic, J. Bratt, J.W. Negele, A. Pochinsky, S. Syritsyn (MIT) R.G. Edwards, B. Musch, D.G. Richards (JLab) K. Orginos (W&M) M. Engelhardt (New Mexico) G. Fleming, M. Lin (Yale), H.-W. Lin (INT), H. Meyer (Mainz), D.B. Renner (DESY Zeuthen), M. Procura (TUM), W. Schroers

(LHPC)

D. Brömmel (Southampton), M. Diehl (DESY), M. Göckeler, M. Gürtler, Th. Hemmert, A. Schäfer, A. Sternbeck, F. Winter (Regensburg U.) R. Horsley, J. Zanotti (Edinburgh U.) Y. Nakamura (Regensburg) P. Rakow (Liverpool U.) D. Pleiter, G. Schierholz (DESY) H. Stüben (ZIB); M. Ohtani (Tokyo)

(QCDSF/UKQCD)

M. Altenbuchinger, B. Musch (\rightarrow JLab), M. Gürtler (\rightarrow Regensburg \rightarrow), W. Weise

(T39, TUM)

References: QCDSF: PoS(LAT2006)120; 0710.1534; PRL 98 222001 (2007); PRD 74:094508,2006 (hep-lat/0603028); PRL 2008 (0708.2249); LHPC: PRL 96 502001 (2006) ; PRD 77, 094502 (2008), 0810.1933; PRD81:034507, 2010 (0907.4194); 1001.3620; PhH Phys.Rep. 2010 (0912.5483)