Analysis status of the \land hypernuclear spectroscopic experiment @ Jlab Hall C (E01-011)

Contents

- 1: Characteristics of the (e,e'K⁺) reaction
- 2: Physics goals of Jlab E01-011
- **3:** Thomas Jefferson National Accelerator Facility
- **4: Kinematics**
- **5: Experimental Setup**
- 6: Introduction of the Jlab E89-009
- 7: Improvement in the E01-011
- 8: Analysis Strategy
- 9: Summary

Y. Okayasu for the Jlab E01-011 collaboration Department of Physics. Tohoku University

Characteristics of the (e,e'K⁺) reaction

- 1) Large momentum transfer
 - \rightarrow generate various kind of states
- 2) EM production (w/ extremely forward angle detection)
 - \rightarrow large amplitude of spin flip & non-flip states
- 3) Convert proton to Λ
 - → comparison w/ mirror symmetric hypernuclei
- 4) High quality, primary, continuous electron beam
 - \rightarrow precise spectroscopy

Physics goals of Jlab E01-011

a: Investigate Λ single particle states up to beyond *p*-shell

>> Not only ${}^{12}C(e,e'K^+){}^{12}_{\wedge}B$, also ${}^{28}Si$

b: Observe *p*-shell region of ${}^{12}{}_{\Lambda}$ B splitting

>> Provide precise information on the spin dependent part

of ΛN interaction w/ ${}^{12}C(e,e'K^+){}^{12} \Lambda B$ reaction

c: Mirror symmetric \wedge hypernuclei, e.g. ${}^{12}{}_{\wedge}$ C VS. ${}^{12}{}_{\wedge}$ B

Historically ...

 Λ hypernuclear spectroscopy

→ well done through (K⁻, π^-) & (π^+ , K⁺) reaction in CERN, BNL and KEK

>> Energy resolution was limited (the secondary beam)

(e,e'K⁺) reaction? \rightarrow coincidence measurement required \leftarrow CW beam

Jefferson Lab. provides high quality continuous electron beams.

Thomas Jefferson National Accelerator Facility

Accelerator spec.

- Duty factor : ~100 % CW beam
- Beam current : $< 200 \ \mu A$
- Maximum energy : 5.5 GeV
- Beam emittance : $\sim 2 \times 10^{-9}$ m·rad
- Energy stability : < 10⁻⁴

Jlab is a unique facility for (e,e'K⁺) experiments

Kinematics

Jefferson Lab

Experimental setup

Enge Spectrometer	INC K+ AČ Vaeuum cxtension DC TO	F HKS (normal conduct	tive)
e 21.5° E e	Q2 Q1 Slit box	Configuration Central momentum	Q+Q+D 1.2 GeV/c
	Splitter magnetSchematic Top VieTargetNew Hypernuclear Spec at Jlab	w of ctrometer Solid angle Flight path	2 x 10 ⁻⁴ [FWHM] 16 msr w/ splitter 10 m
	0 1 2 m	2003.2.3. Momentum acceptance	$\pm 12.5 \%$
ENGE Central momentum	0.3 GeV/ <i>c</i> 5 x 10 ⁻⁴ [FWHM]	Max. dipole field	180 mr (h) 1.5 T
Momentum acceptance	±30 % 7.75°		
	Thomas Jofferson Notio	nal Assalaustan Essilitu	

Jefferson Lab

Pioneering ∧ hypernuclear spectroscopy : Jlab E89-009

Review : 1) small K⁺ solid angle, poor energy resolution

→ Upgrade K⁺ spectrometer (HKS)

2) Poor S/N ratio due to the Bremsstrahlung associated electrons

→ Introduce Tilt method for the scattered electron spectrometer

Improvement in the E01-011

1) High resolution Kaon Spectrometer (HKS)

 \rightarrow Momentum res. : $\Delta p/p = 2 \times 10^{-4}$ [FWHM] (SOS: 5 x 10⁻⁴)

 \rightarrow K⁺ solid angle : 16 msr w/ splitter (SOS: 4 msr)

2)Tilt method for e' arm

Tilt ENGE by ~8 degs upward, shut out Bremsstrahlung, Moller associated electrons. Thus in the case of ¹²C target...

- → e' detect. rate : ~1 MHz (*E89-009 : ~200 MHz*)
- \rightarrow Higher beam current : 30 μ A (*E89-009* : 0.6 μ A)

 \rightarrow Thicker target : 100 mg/cm² (*E89-009 : 22 mg/cm²*)

Achieved data taking for higher mass region like ²⁸Si w/ higher resolution

K⁺ ID

e' / K⁺ incident angle (@ target), momentum calibration

Detect position & angle w/ Drift Chambers

Spectra (preliminary) : p (e,e'K⁺) Λ / Σ^{0}

Jefferson Lab

Spectra (preliminary) : ${}^{12}C$ (e,e'K⁺) ${}^{12}{}_{\wedge}B$

Jefferson Lab

Spectra (preliminary) : 28 Si (e,e'K⁺) 28 Al

Efficiencies

Cross section of the ($\gamma *, K^+$):

$$\overline{\left(\frac{d\sigma}{d\Omega}\right)} = \frac{1}{N_T} \frac{1}{N_\gamma} \sum_{i=1}^{N_K} \frac{1}{\varepsilon_{total} d\Omega}$$

N_T : # of target

 N_{γ} : # of V.P.

d Ω : solid angle acceptance of HKS N_K : yield of Λ , Σ^0 , or hypernuclear state

$$\varepsilon_{total} = \varepsilon_{htrk} \cdot \varepsilon_{trig} \cdot \varepsilon_{AC} \cdot \varepsilon_{WC} \cdot \varepsilon_{bk} \cdot f_{VETO}$$
$$\cdot f_{abs} \cdot f_{decay} \cdot \varepsilon_{etrk} \cdot f_{comp}$$

ε htrk: ~ 0.86 **HKS tracking efficiency** ε triq: ~0.99 **Trigger efficiency** ε AC: ~0.8 **AC cut efficiency** ε WC: ~0.97 WC cut efficiency εbk: ~0.95 beta cut efficiency ε etrk: ~0.85 **ENGE tracking efficiency** f veto: AC veto factor f abs: ~0.95 Kaon absorption factor f decay: ~0.33 Kaon decay factor f comp: ~0.93 **Computer dead time factor**

- 1) The 2^{nd} generation Spectroscopic experiment for Λ hypernuclei has been completed at Jlab, 2005.
- 3) ²⁸∧Al was observed for the 1st time.
 It is a breakthrough for medium mass region.
- 2) Introduction of the HKS and Tilt method enabled high resolution and high statistics data taking.
- 4) Mass calibration needs further improvement.
- 5) Efficiencies estimation has been almost done

Backup

from here

Characteristics of the (e,e'K⁺) reaction (2)

Incident angle calibration (1)

Jefferson Lab

Incident angle calibration (2)

More scattered angle dependence for L and S
→ Tune scatted angle by sieve slit data

Jefferson Lab

 $(M_{proton} << M_{12C})$

Momentum calibration

Calibrate w/ well known $CH_2(\Lambda / \Sigma^0)$

ENGE / HKS coincidence selection

Spectra (preliminary)

Comparison with a theoretical model

12 $^{\Lambda}B$: Hall C (upper) V.S. Hall A (lower)

Thomas Jefferson National Accelerator Facility

20

Spectra (preliminary)

Tilt method principle

Singles rate comparison : E89-009 VS. E01-011

E01-011	Calculated values w/ $I_e = 30 \ \mu A$, 100 mg/cm ²							
	HKS			ENGE				
Target	e ⁺ (kHz)	π^+ (kHz)	K ⁺ (kHz)	p (kHz)	e ⁻ (kHz)	π ⁻ (kHz)		
¹² C		420	0.38	150	1,000	2.8		
²⁸ Si		420	0.32	130	1,960	2.8		
51 V		410	0.29	120	2,650	3.0		
¹² C	100	1.4	<1 Hz	0.14	200,000			
	SOS				ENGE			
E89-009	Measured value w/ $I_e = 0.47 \ \mu A$, 22 mg/cm ²							

Jlab HallC Counting hall

Observed Λ hypernuclear chart

Setup overview

Incident angle calibration (1)

質量スペクトル(暫定結果)

Jefferson Lab

S/N comparison for ${}^{12}C$ (e,e'K⁺) ${}^{12}_{\wedge}B$: E89-009 VS. E01-011

まとめ

- 2005 年 6 月より米国 Jlab にて ⁷Li, ⁹B, ¹²C, ²⁸Si 標的に対する (e,e'K⁺) 反応を用いた
 ∧ ハイパー核分光実験を行った。
- O ⁷Li, ²⁸Si 標的については、世界初の観測となる。
 特に ²⁸Si については、中重質量領域 (e,e'K+) 反応を用いたハイパー核分光の突破口 となった。
- HKS の導入+Tilt 法の採用は高分解能・高統計なデータ収集を可能にした。
- 質量スペクトル導出に対する、光学パラメータの較正は若干改善の余地がある。

Data summary

Typical value

Target	Target thickness [mg/cm ²]	Ι [μΑ]	ENGE [MHz]	HKS [kHz]	Trig. [Hz]
CH ₂	100	1.5	0.5	2	46
⁷ Li	190	25	1.2	11	850
⁹ Be	190	16	0.9	5	700
¹² C	100	28	1.2	12	550
²⁸ Si	65	13	1.1	7	300
⁵¹ V	60	14	1.4	8	430
⁸⁹ Y	56	10	1.4	8	420

Beam energy: 1.851 GeV .

K : ~130 Hz w/ ¹²C, 30 uA

電子線を用いたハハイパー核分光の特徴

 $(\pi^+, K^+), (e, e'K^+)$ 反応による鏡映核(A=12)の束縛エネルギースペクトル比較

¹²C (π^+, K^+) ¹² C : KEK E140A, $\angle E = 2$ MeV [FWHM]

#1 : Ground state : 1⁻ $\begin{bmatrix} {}^{11}C \text{ g.s.} \otimes s_{\Lambda} \end{bmatrix}$ #2 : p_{Λ} state : 2⁺ $\begin{bmatrix} {}^{11}C \text{ g.s.} \otimes p_{\Lambda} \end{bmatrix}$

中間子ビームを用いた

ハイパー核分光は、1970 年代より CERN, BNL, KEK などで精力

的に行われてきた。一方、ビームサイズ (>1 cm)、標的厚の制限からエネルギー分解能は

数 MeV 程度。

 ^{12}C (e,e'K⁺) 12 B : Jlab E01-011, $\angle E = ~700$ keV [FWHM]

#1 : Ground state doublets : $1^{-} + 2^{-}$ [${}^{11}B \text{ g.s.} \otimes s_{\Lambda}$] #2, #3 : Core excited states : 1^{-} , 2^{-} [${}^{11}B^{*} \otimes s_{\Lambda}$] #4 : p_{Λ} states : [${}^{11}B \text{ g.s.} \otimes p \Lambda$]

ー方、2000 年には Jlab において連続電子線 (ビームサイズ φ ~0.1 mm)を用いた Λ ハイパー 核分光実験 (E89-009) が世界で始めて実現し、MeV 以下のエネルギー分解能を実現。

BPMs in switchyard & HallC arc.

"HALLcp" VS IPM3C12X

Jefferson Lab

12**C**

-2

-1.5

-1

Centre of mass

HAPPEX and beam momentum (HALLCp) status for ¹²C run

Thomas Jefferson National Accelerator Facility

0.5

1.5

3C12X [cm]

2

-0.5

Kaon survival rate

