### Study of MRS photodiodes for T2K experiment

Yury Kudenko

E. Akhromeev, G. Bondarenko<sup>\*)</sup>, V. Golovin<sup>\*)</sup>, E. Gushin, A. Izmailov, M. Khabibullin, A. Khotjantsev, B. Lubsandorzhiev, O. Mineev, Yu. Musienko, A. Shaikhiev, N. Yershov

INR, Moscow \*) CPTA, Moscow

> *T2K detectors MRS photodiodes parameters tests 400 pixel MPPC's SMRD detectors with MRS APD's*

> > PD07, Kobe, 28 June 2007



# **ND280m**





#### **Scintillator detectors with WLS fibers**

- Individual fiber readout FGD, POD, Ecal, SMRD, INGRID: ~ 60000 readout channels
- Limited space for photosensors
- Magnetic field

**T2K decision in 2004:** ND280m baseline photosensor -Multi-pixel Geiger mode avalanche photodiode

# **Photosensors for T2K**

(2004 - 2005)

#### **MPPC (Hamamatsu, Japan)** 100/400 pixels



#### MRS APD (CPTA, Moscow) 556 pixels



### T2K requirements:

# pixels Active area Gain Minimum PDE **Bias voltage** Dark rate Pulse width Life time, stability very good

**≥ 400** 1.0-1.2 mm<sup>2</sup> ~10<sup>6</sup> 12% 25-70 V ≤ 1MHz (th = 0.5 p.e.) ≤ **50 ns** 

## **Structure of MRS APD**



About 300 MRS APD's were tested in total

### PDE

**Photon detection efficiency (PDE)** =  $QE \times \varepsilon_{pixel} \times \varepsilon_{Geiger}$ 



### Dark rate vs threshold



Th = 0.5 p.e.  $\rightarrow$  dark rate ~ 1MHz Cross talk <10%

## Dark rate vs threshold

#### MPPC (400pixels) 6 devices





## Parameters vs V<sub>bias</sub>

#### **MPPC**

#### **MRS APD 42V**



MPPC-10 t=23.0-23.4 C; MPPC-2 t=25.5-25.9 C

PD07, 28 June 2007

# **Operating voltage**

#### **MRS APD**

#### **MPPC**



PD07, 28 June 2007

## **Temperature dependence**

#### MRS APD: 42V, 23V, 30V



# **Temperature dependence**

#### MPPC (400 pixels)



# **Recovery time**



## **T2K readout**

# Readout electronics for POD, ECAL, SMRD, INGRID TRIP-t ASIC





# Pulse shape: MRS APD



# **Pulse shape: MPPC**

MPPC 400 pixels  $V_{\text{bias}} = 69.85 \text{ V}$ 



# LED spectra

### M. Raymond, Imperial





PD07, 28 June 2007

### Long term stability/Life time



For 3 years ~300 MRS APDs have been tested (~220 MRS-42V(1710); 40 MRS-23V, 30V and others) 14 (13 MRS-42V and 1 of an old type) APDs died at INR

10 400 pixel MPPC's were tested for about 2 months, 1 - for 0.5 year ALL are alive and show stable parameters

PD07, 28 June 2007

# **SMRD counters**

### UA1/NOMAD magnet will be instrumented with scintillator counters → SMRD

SMRD comprises of about 2000 counters  $\rightarrow$  4000 photosensors

Detection of high energy muons from  $\nu$  interactions Cosmic trigger for TPC calibration

Physics requirements: Detection efficiency ~100% Dark rate <1MHz (<100 kHz for cosmic trigger)

#### **Baseline design:**

- Extruded scintillator (Vladimir, Russia)
  - ~ 90 x 17 x 0.7 cm<sup>3</sup>
- Chemical reflector
- One fiber KURARAY Y11, double clad,  $\emptyset$ 1 mm, S-bent, length ~2.5 m
- 3 mm deep groove
- Both end readout

Inner Detectors

μ



# **Spatial resolution**



Beam test with 1.4 GeV/c pions<br/>MRS APD 42V<br/>well separated p.e. peaks<br/>light yield15 p.e.<br/>1.5 - 2.0 ns<br/>spatial resolutiontiming  $(\sigma_t)$ 1.5 - 2.0 ns<br/>99%

### **SMRD with MPPC**

S-counter 7mm, cosmic muons, Photosensors: two MPPC's



 $V_{bias}$ =69.8V  $\rightarrow$  I.y. = 22.9 pixels

$$V_{\text{bias}} = 70.0 \rightarrow \text{I.y.} = 31.8 \text{ pixels}$$

### Parameters of MRS APD's and MPPC's

#### (room temperature)

|                          | MRS APD (23V/30V)         | MPPC                |
|--------------------------|---------------------------|---------------------|
| # pixels                 | 556                       | 400                 |
| PDE, %                   | 25-32                     | 30-33               |
| Dark rate (th=0.5pe) MHz | 1.0                       | 0.3                 |
| Cross talk, %            | <10                       | <20                 |
| Gain                     | (0.3-0.5)x10 <sup>6</sup> | 0.8x10 <sup>6</sup> |
| Pulse shape              | long tale                 | <50 ns              |
| Single p.e.              | +-                        | ОК                  |
| Recovery time            | a few μs                  | ≤ 20 ns             |
| Temperature dependence:  |                           |                     |
| Signal                   | -(2-3)%/deg               | -(6-8)%/deg         |
| Dark rate                | 60 kHz/deg                | (10-12) kHz/deg     |

### Conclusion

**Remarkable progress in GM APD's for last 2 years** 

**MPPC: almost met the T2K requirements** 

MRS APD: problem with pulse shape/gain long recovery time (?)

Lifetime, long term stability should be extensively studied

T2K/ND280 will be the first large experiment/detector which will use Geiger mode APD's as photosensors