PD07 : International workshop on new photon-detectors June 27-29, 2007 @ Kobe University, Japan

Radiation damage of MPPC by gamma-ray irradiation with ⁶⁰Co

T. Matsubara, H. Tanaka, K. Nitta, M. Kuze Tokyo Institute of Technology For photon sensor group in KEK detector technology project

- Motivation
- Test method
- ♦ Leakage current measurement
- Radiation effect measurement

(Gain, Noise rate, Crosstalk)

- Evaluation of radiation damage
- Summary

Motivation

Developed by Hamamatsu Photonics

Small size High gain (10⁵~10⁶) Not susceptible to magnetic field Operation at low bias voltage Low cost

MPPC will be used in high energy physics

→ Radiation damage is problem for considering applications

MPPC is new developed device, and radiation resistance is unknown \rightarrow We studied radiation damage using ⁶⁰Co gamma-ray

See T. Tanaka's poster about heavy ion irradiation and T. Matsumura's talk about proton & neutron irradiation

Test method (1)

Test Sample

 Type No
 : T2K-11-100C (100 pixels)

 Vop
 : 70.7 V ($\Delta V=1.2 V$)

 Dark Noise
 : 334 kHz (0.5 p.e.thr.)

 38 kHz
 (1.5 p.e.thr.)

 [Condition: 25°C]

⁶⁰Co gamma-ray irradiation facility in Tokyo Tech

Radiation Sou	rce : ~15TBq ⁶⁰ Co Source
γ-ray energy	: 1.173 MeV, 1.332 MeV
Dose rate	: distance dependence
	(few % error)

Test method (2)

Test flow	Measurement	Condition
40Gy Irradiation @60Co room	Leakage Current (4h)	12.9°C~13.5°C ΔV=1.2 V
Radiation effect measurement @Lab	Leakage Current (1h)	25°C ΔV=1.2 V
	Gain Noise rate Crosstalk	25℃

Repeated 40 Gy irradiation (10 Gy/h×4h) 6 times Total 240 Gy irradiation accumulated

Leakage current measurement

Method of measurement
Result of leakage current

during irradiation
after each irradiations

High dark noise
Infrared emission

07/06/27~29

Method of leakage current measurement

■ Supply voltage and measure leakage current with Source-meter
 ■ Irradiation increases leakage current
 → Radiation damage indicator

0 Gy to 40 Gy irradiation

Leakage current change so much, to see before and just after After irradiation, leakage current decreased during ~10 min after voltage supplied \rightarrow Annealing effect 07/06/27~29 PD07@Kobe

Leakage current change so much, to see before and just after After irradiation, leakage current decreased during ~10 min after voltage supplied \rightarrow Annealing effect 07/06/27~29 PD07@Kobe

Leakage current change so much, to see before and just after After irradiation, leakage current decreased during ~10 min after voltage supplied \rightarrow Annealing effect 07/06/27~29 PD07@Kobe

- Leakage current at V_{op} increased ~1.7 times by these irradiations comparing the second half of each data
- Annealing effect were observed from 120Gy irradiation
- Leakage current changed so much just after 200Gy and 240Gy

- Leakage current at V_{op} increased ~1.7 times by these irradiations comparing the second half of each data
- Annealing effect were observed from 120Gy irradiation
- Leakage current changed so much just after 200Gy and 240Gy

- Leakage current at V_{op} increased ~1.7 times by these irradiations comparing the second half of each data (0.23 $\mu A \rightarrow 0.39 \mu A$)
- Annealing effect were observed from 120Gy irradiation
- Leakage current changed so much just after 200Gy and 240Gy

- Leakage current at V_{op} increased ~1.7 times by these irradiations comparing the second half of each data (0.23 $\mu A \rightarrow 0.39 \mu A$)
- Annealing effect were observed from 120Gy irradiation
- Leakage current changed so much just after 200Gy and 240Gy

High dark noise

- 1 High dark noises were observed during high leakage current
- 2 The high dark noises disappeared, as leak current get settled
- Turn off voltage, wait for a while, and turn on,

this phenomena appeared again

07/06/27~29

Infrared emission

We took a picture by infrared camera, supplying bias voltage in order to look at where the high dark noise generated
A large current flows in the red area

We find the localized spot where the high dark noise generated

- **Outer edge of device and along the bias lines (to see full device)**
- **Edge of a pixel (to see 1 pixel)**

07/06/27~29

PD07@Kobe

(*)Bias lines exist alternately

Damage effect measurement

Measurement items

- Gain
- Noise rate
- Crosstalk

Method of Gain measurement

Shed LED light pulses to MPPC and measure ADC distribution
d (= 1p.e peak - pedestal peak) and caluculate gain with following formula

Gain =
$$Q_{pixel} / e = \frac{d \times ADC \text{ resolution}}{AMP \text{ gain } \times e}$$

Change voltage, calculate gain in the same way

 $07/06/27 \sim 29$

Gain vs Bias voltage

Variation of the gain within the systematical effect by temperature

Method of Noise rate, Crosstalk

Noise rate, Crosstalk vs Bias voltage

Noise rate vs Bias voltage

Crosstalk vs Bias voltage

- Noise rate increased with radiation
- 1 p.e. noise rate at V_{op} increased ~1.5 times after 240Gy irradiation (280kHz ⇒ 430kHz)
- **For crosstalk, no significant change** was observed

07/06/27~29

Noise rate, Crosstalk vs Bias voltage

Noise rate vs Bias voltage

Crosstalk vs Bias voltage

- Noise rate increased with radiation
- 1 p.e. noise rate at V_{op} increased ~1.5 times after 240Gy irradiation (280kHz ⇒ 430kHz)
- **For crosstalk, no significant change** was observed

07/06/27~29

Evaluation of radiation damage

Evaluated radiation damage, assuming 25°C and 70.7V

Leakage current and Noise rate increased as function of total dose
 For Gain and Cross talk, no significant change were observed

^{07/06/27~29}

Summary

- We studied radiation damage of MPPC using ⁶⁰Co gamma-ray
- Total 240Gy irradiation accumulated
- Leakage current and Noise rate increased as function of total dose In condition of 25°C and V_{op}
 - Leakage current increased ~1.7 times
 - Noise rate increased ~1.5 times
- For Gain and Cross talk, no significant change was observed
- High dark noises were observed during high leakage current after 240Gy irradiation
- We find the localized spot where the high dark noise generated
 - Outer edge of pixels and along the bias line (to see full device)
 - Edge of a pixel (to see 1 pixel)

07/06/27~29

07/06/27~29

Back up

07/06/27~29

All data of leakage current

Annealing effect of infrared emission

Just after voltage supplied

After 5 min.

After 10 min.

I-V curve

- Leakage current increased with irradiation
- Sudden increase was observed after 200 Gy and 240 Gy irradiation

V₀, C_{pixel} vs dose rate

No significant change was observed in both
 There is a error in temperature control during 120 Gy measurement

Temperature dependence (1)

Temperature dependence (2)

Temperature dependence (3)

Comparing bias voltage (=70.7V), Leakage current is 30<25<20<15°C
Comparing over voltage (=1.2V), Leakage current is 15<20<25<30°C