ミクロ・マクロ双対性 — 量子場をマクロデータから 再構成する数学的方法 —

京都大学数理解析研究所

小嶋泉

KEK 研究会

「量子論の諸問題と今後の発展」

(2006.3.10-11)

Abstract

The deep and important significance of the socalled "Quantum-Classical Correspondence" will be elaborated and explained from the mathematicalphysical viewpoint of "Micro-Macro Duality". In the operator-algebraic formulation this will be shown to be implemented in the form of Takesaki duality of crossed products as a specific realization of the essence of Galois-Fourier duality.

Contents:

Sec.1: Quantum-Classical Correspondence & Micro-Macro Duality

1.1: Q-C Correspondence (I) Sectors & centre = order parameters

Sec.2: Q-C Correspondence (II): How to Detect Inside of Sectors

Sec.3: Crossed Product $\mathcal{M} \rtimes_{\alpha} \mathcal{U} = System + Apparatus$

Sec.4: Reconstruction of Micro-Algebra \mathcal{M} & its Type-Classification

1 Quantum-Classical Correspondence and Micro-Macro Duality

1) Quantum-classical correspondence (q-c correspondence, for short) = classical macro-objects as condensates of ∞ -quanta in micro-quantum system

"Micro-Macro Duality" [1]:

a) Emphasis on **bi-directionality** for controlling [Micro \rightleftharpoons Macro]

Bi-directionality in [deduction (top-down) vs. induction (bottom-up)]

Importance of bi-directionality as [accessibility to actual physical systems] + [feedback]

Cf. Standard approach = **[one-directional deduc-tions]** of macro-phenomena from "ultimate" theory of microscopic world

 \implies What basis for starting postulates in a theoretical deduction?

Starting hypothesis TH: an ad hoc theoretical postulate

 \implies Predictions deduced from the theory

 \uparrow — measurement processes

Experimental data $\mathcal{E}\mathcal{X}$

 \implies Comparison between theory & experiments: to check the starting \mathcal{TH} to be "verified" as **one of the possible candidates** as sufficient conditions for

 $\begin{array}{cccc} \mathcal{TH} & \searrow \\ \mathcal{EX}: & \mathcal{TH}_1 & \longrightarrow & \mathcal{EX} + errors \\ & \vdots & \nearrow \end{array}$

b) Duality: mathematical formulation(s) of bi-directionality
 mathematical dualities (or categorical adjunctions) between the algebras of Micro-scopic systems
 and Macro = its states or representations detectable
 macroscopically

e.g., Fourier-Pontryagin-Tannaka-Krein-Tatsuuma duality of [group $G \rightleftharpoons \hat{G}$ or Rep(G)] [2] Takesaki duality of crossed products [3, 4]: $(\mathcal{M} \rtimes G) \rtimes \hat{G} \simeq \mathcal{M} \otimes B(L^2(G))$ $\mathcal{M} \xrightarrow{\rtimes G} \mathcal{M} \rtimes G$ $\downarrow \wr \qquad \qquad \downarrow \wr$ $\mathcal{M}^G \rtimes \hat{G} \xleftarrow{\qquad} \mathcal{M}^G$

c) Mathematical possibility for bi-directionality suggested by sector theory in algebraic QFT:

 \mathfrak{F} : field algebra $\curvearrowleft G$: group of symmetry \implies observable algebra $\mathfrak{A} = \mathfrak{F}^G$ as fixed-point subalgebra of *G*-invariants

 $\mathfrak{A}(=\mathfrak{F}^G) + \mathbf{something} \implies_{\substack{\text{reconstruction}\\ \text{as inverse problem}}} [\mathfrak{F} \curvearrowleft G]$

What are "**something**" & [reconstruction in inverse direction]?:

"something" = D(oplicher-)H(aag-)R(oberts) selection criterion to select *physically relevant states* [5]

$$\implies \mathsf{DR} \text{ category } \mathcal{T}(\subset End(\mathfrak{A})) \stackrel{[6]}{\simeq} Rep(G)$$
$$\longleftrightarrow \hat{G}: \text{ sectors } \stackrel{\mathsf{Tannaka-Krein duality}}{\Longrightarrow} G$$

Reconstruction [6] of $\mathfrak{F} \curvearrowleft G$ via *crossed product* $\mathfrak{F} = \mathfrak{F}^G \rtimes \hat{G} \curvearrowleft G = Gal(\mathfrak{F}/\mathfrak{A})$: Galois group

I.e., $\mathfrak{F} \curvearrowleft G$ (: *Micro*) is recovered from "Macro data" \mathcal{T} of sectors of \mathfrak{A} through Galois extension by solving DHR criterion as an "equation" involving \mathfrak{A} as coefficient ring

Thus, we need, in two steps,

2) Classification of states-representations of algebra \mathfrak{A} of physical variables into sectors + intrasectorial structures

Sec.1.1 [Q-C Correspondence I]: sectors = factor rep.'s = pure phases \leftrightarrow centre of a given representation $\pi(\mathfrak{A})'' = \mathcal{M}$ according to **quasi-equivalence** = macroscopic order parameters \Longrightarrow classifying space of sectors = $Spec(\mathfrak{Z}(\mathcal{M}))$

[Q-C Correspondence II] : operationally meaningful determination of **intrasectorial** structures of a **factor**

 ${\cal M}$ (describing a sector) by means of a MASA ${\cal A}={\cal A}'\cap {\cal M}={\cal U}''$

 \Downarrow

Sec.2: Q-C Correspondence (II): How to Detect Inside of Sectors [1]

MASA \mathcal{A} and measurement scheme by Kac-Takesaki operator \rightarrow instrument:

 \rightarrow measurement **coupling** to make a composite system of \mathcal{M} + measuring system **identified with** \mathcal{A} : determined by **K-T operator** of $\widehat{\mathcal{U}}$

 \rightarrow what is a K-T operator? \rightarrow instrument

States (within a sector corresponding to \mathcal{M}) \longleftrightarrow $Spec(\mathcal{A}) =$ classifying space of intrasectorial states

[: Analogy to roots of a semi-simple Lie algebra wrt a Cartan subalgebra] Sec.3: Crossed Product $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$ to Couple System & Apparatus [7]

Measurement coupling = crossed product $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$ composed of object system + measuring system: \implies determination $\mathcal{M} \rtimes_{\alpha} \mathcal{U} = \mathcal{A} \otimes B(L^2(\mathcal{U}))$ of algebra \mathcal{A} of observables to be measured + reservoir system $B(L^2(\mathcal{U}))$ to amplify \mathcal{A} with damping others (under the assumption of *semi-duality*)

 $\rightarrow \text{Takesaki duality } (\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \rtimes_{\widehat{\alpha}} \widehat{\mathcal{U}} = \mathcal{M} \otimes B(L^{2}(\mathcal{U})) = \mathcal{M}: \text{ Galois-Fourier duality to generate measured values } Spec(\mathcal{A}) \subset \widehat{\mathcal{U}} + \text{ to recover the original system } \mathcal{M} \text{ from the measurement situation with } \mathcal{M} \rtimes_{\alpha} \mathcal{U} \text{ & observed data structure: } \mathcal{A} \subset (\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \underset{\widehat{\alpha}}{\frown} \widehat{\mathcal{U}} \text{ (with the latter encoded in the corresponding instrument)}$

The same structure as above found also in sector theory:

field algebra $\mathfrak{F}_{\tau} G \Longrightarrow \mathfrak{F} \rtimes_{\tau} G \simeq \mathfrak{F}^G = \mathfrak{A}$: observable algebra $\overset{\mathsf{DHR criterion}}{\Longrightarrow}$ sector data $= \hat{G} \underset{\hat{\tau}}{\curvearrowright} \mathfrak{A}$ $\Longrightarrow \mathfrak{A} \rtimes_{\hat{\tau}} \hat{G} = (\mathfrak{F} \rtimes_{\tau} G) \rtimes_{\hat{\tau}} \hat{G} = \mathfrak{F} \otimes B(L^2(G)) = \mathfrak{F}$ Sec.4: Reconstruction of Micro-Algebra \mathcal{M} & its Type-Classification [7]

Starting from the problem of **state** determination (inside a sector): $\mathcal{M} \to \mathcal{M} \rtimes_{\alpha} \mathcal{U}$: measurement coupling

 $\implies \text{operationally meaningful reconstruction of al-}\\ \textbf{gebra} \ \mathcal{M} \text{ through crossed product } (\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \rtimes_{\hat{\alpha}} \widehat{\mathcal{U}} = \mathcal{M} \\ \mathcal{M} \end{cases}$

Classification scheme formulated in the classifying space $Spec(\mathcal{A}) \curvearrowright \widehat{\mathcal{U}}$ reveals that the starting assumption of $\alpha = Ad^{\mathcal{U}}(= \text{external coupling only!})$ can reproduce only \mathcal{M} of type I

 \implies Operational detection of the intrinsic **dynamics** α with deviation from $Ad^{\mathcal{U}}$: necessary!

: conceptually very important observation to support the above *bi-directionality*

NB. Subtleties of *non-type I* algebras (e.g., typical cases of *type III* in relativistic QFT): a state within a sector cannot uniquely be specified by means of quantum observables for lack of *minimal projections*.

1.1 Q-C Correspondence (I) Sectors & centre = order parameters

[Q-C Correspondence I]= Major gap between Quantum Micro and Classical Macro, in terms of superselection sectors and *intersectorial* structures described by order parameters [8]:

At this level, clear-cut separation between quantum and classical is OK by order parameters to specify a sector

Sectors (or pure phases) $\stackrel{\text{def}}{=} \begin{array}{l} quasi-equivalence classes of factor states/rep.'s faithfully parametrized by Spec of centre of a relevant representation of algebra of micro-quantum observables to be interpreted as macroscopic order parameters$

Quasi-equivalence [9]= unitary equivalence *up to multiplicity*

centre (of rep.'s) = *commutative* algebra of *macroscopic* order parameters

 \implies (superselection) sector structure consisting of a family of sectors (or pure phases) described mathematically by factor states and representations

Totality of sectors \implies mixed phase involving both classical and quantum aspects.

Intersectorial structure = coexistence of and gap between quantum(=intrasectorial) and classical(=intersectoria aspects.

 $\simeq Spec(centre)$: classifying space of sectors to distinguish among different sectors

 \Longrightarrow At this level, Micro-Macro relation reduces to the relations between

QuantumClassical(=non-commutative)vs.(=commutative)

 \implies A **unified scheme** for Micro-Macro relations can be formulated on the basis of selection criteria [8]:

as a natural generalization of

Example 1 Manifold M with local charts $\{(U_{\lambda}, \varphi_{\lambda} : U_{\lambda} \rightarrow \mathbb{R}^{n})\}$: $i) = local neighbourhoods U_{\lambda}, ii) = \mathbb{R}^{n},$ $iii) = local charts \varphi_{\lambda} : U_{\lambda} \rightarrow \mathbb{R}^{n},$ iv) = geometrical interpretation in terms of geometrical invariants such as homology, cohomology, homotopy, K-groups, characteristic classes, etc., etc. **Example 2** Non-equilibrium local states characterized by localizing generalized equilibrium states with fluctuating thermal parameters [10, 11]:

i) = set E_x of states ω with local energy bound $\omega((1 + H_{\mathcal{O}})^m) < \infty$,

ii) = classifying space B_K of thermodynamic phases with fluctuating parameters (β, μ) described by prob. meas.'s $\rho \in M_+(B_K) =: Th$.

iii) = comparison of unknown ω with known reference states $\omega_{\rho} = C^*(\rho) = \int_{B_K} d\rho(\beta, \mu) \omega_{\beta,\mu}$ through examining criterion $\omega \equiv C^*(\rho)$ via "quantum fields at $x'' \in \mathcal{T}_x$ (justified by energy bound in i)), iv) = adjunction (as localized 0-th law of thermodynamics), $[\omega \equiv \mathcal{T}_x C^*(\rho)] \rightleftharpoons [(\mathcal{C}^*)^{-1}(\omega) \equiv \rho], \mathcal{C}^*(\mathcal{T}_x) \rho],$ or,

 $\begin{bmatrix} E_x/\mathcal{T}_x \end{bmatrix} (\omega, \mathcal{C}^*(\rho)) \stackrel{q \rightleftharpoons c}{\simeq} [Th/\mathcal{C}(\mathcal{T}_x)] ((\mathcal{C}^*)^{-1}(\omega), \rho),$ with $q \rightarrow c$ channel " $(\mathcal{C}^*)^{-1}$ " adjoint to $c \rightarrow q$ channel \mathcal{C}^* (from classical reference sys. to generic quantum states) achieves two goals, a) to identify a local thermal state ω and b) to give thermal interpretation $\rho \underset{\mathcal{C}^*(\mathcal{T}_x)}{\equiv} (\mathcal{C}^*)^{-1}(\omega)$ of ω in terms of known vocabulary $\rho \in Th$.

2 Q-C Correspondence (II): How to Detect Inside of Sectors

Intrasectorial structures and measurement processes: To describe intrinsic quantum structures *within* a sector, not only theoretically but also operationally, necessarily involving quantum measurements.

2.1 Maximal abelian subalgebra

MASA $\mathcal{A} =$ maximal abelian subalgebra consisting of simultaneously measurable observables for specifying states inside a sector described by a **factor** \mathcal{M} i.e., pointer positions on $Spec(\mathcal{A})$ of the measuring apparatus should determine a microscopic quantum state of \mathcal{M} (**)

Reformulation necessary of the traditional MASA $\mathcal{A}' = \mathcal{A}$ to accommodate quantum systems with

 ∞ -degrees of freedom (with non-type I representations) such as quantum fields: $\mathcal{A} = \mathcal{A}' \cap \mathcal{M}$

 $\begin{bmatrix} \mathsf{NB:} & \mathcal{A}' = \mathcal{A} \Longrightarrow \mathcal{M}: \text{ type } \mathsf{I} \because \end{pmatrix} & \mathcal{A}' = \mathcal{A} \subset \mathcal{M} \Longrightarrow \\ \mathcal{M}' \subset \mathcal{A}' = \mathcal{A} \subset \mathcal{M} \Longrightarrow \mathcal{M}' = \mathcal{M}' \cap \mathcal{M} = \mathfrak{Z}(\mathcal{M}) \end{bmatrix} \\ \Longrightarrow \text{ measuring apparatus: identified with MASA} \\ & \mathcal{A} = \mathcal{A}' \cap \mathcal{M} \\ \Longrightarrow \text{ need to find a coupling between algebras } \mathcal{M} \\ \text{ and } \mathcal{A} \text{ to realize } (**)!!$

To solve this problem, use $\exists U$: abelian Lie group with Haar measure du which generates MASA A:

$$\begin{array}{rcl} \mathcal{U} & \subset & \mathcal{U}(\mathcal{A}), \mathcal{A} = \mathcal{U}'' \\ & \Longrightarrow & \mathcal{A} = \mathcal{M} \cap \mathcal{A}' = \mathcal{M} \cap \mathcal{U}' \\ & \Longrightarrow & \mathsf{W*-dynamical \ system \ } \mathcal{M} \underset{\alpha}{\frown} \mathcal{U} \\ & \text{with } \mathcal{A} & = & \mathcal{M}^{\alpha(\mathcal{U})} \text{ and } \alpha = Ad. \end{array}$$

⇒ relevance of group duality & Galois extension (=Fourier-Galois duality) expected naturally MASA + measurement coupling to make a composite system of \mathcal{M} + measuring system \mathcal{A} : determined by Kac-Takesaki operator [12, 4, 2] (K-T operator, for short) of dual group $\widehat{\mathcal{U}}$

 \rightarrow what is a K-T operator? \rightarrow instrument

2.2 K-T operator & instrument [1]

i) Hopf-(Kac-)von Neumann algebra $M (\subset B(\mathfrak{H}))$ with Haar weight & coproduct $\Gamma : M \to M \otimes M$

$$\begin{array}{ccccccccc}
M & \stackrel{\mathsf{\Gamma}}{\to} & M \otimes M \\
\Gamma \downarrow & & \downarrow id \otimes \Gamma \\
M \otimes M & \stackrel{\rightarrow}{\Gamma \otimes id} & M \otimes M \otimes M
\end{array}$$

ii) K-Toperator $V \in \mathcal{U}((M \otimes M_*)^-)(\subset \mathcal{U}(\mathfrak{H} \otimes \mathfrak{H}))$: defined as the implementer of Γ ,

$$\Gamma(x) = V^*(1 \otimes x)V \quad \text{for } x \in M$$

$$V_{12}V_{13}V_{23} = V_{23}V_{12} \text{ on } \mathfrak{H} \otimes \mathfrak{H} \otimes \mathfrak{H}$$

called **pentagonal relation** to express coassociativity of Γ . (V_{ij} acts on *i*-th and *j*-th factors in $\mathfrak{H} \otimes \mathfrak{H} \otimes \mathfrak{H}$)

intertwining relation : $V(\lambda \otimes \iota) = (\lambda \otimes \lambda)V$ Fourier transform : $\lambda : M_* \ni \omega \longmapsto \lambda(\omega)$: $= (\omega \otimes id)(V) \in \hat{M}$ s.t. $\lambda(\omega_1 * \omega_2) = \lambda(\omega_1)\lambda(\omega_2)$ convolution product in M_* : $\omega_1 * \omega_2 := \omega_1 \otimes \omega_2 \circ \Gamma$ **Group duality** can be formulated as Kac duality [2] $V \longleftrightarrow \hat{V} := \sigma V^* \sigma$ (with $\sigma(\xi \otimes \eta) = \eta \otimes \xi$). For $M = L^{\infty}(G, dg)$ with locally compact group Gwith Haar measure dg, K-T operator V is given on $L^2(G \times G)$ by

 $(V\xi)(s,t) := \xi(s,s^{-1}t)$ for $\xi \in L^2(G \times G), s, t \in G$, or symbolically, $V|s,t\rangle = |s,st\rangle$ in Dirac-type notation.

iii) Comparison between $Spec(\mathcal{A})$) of MASA \mathcal{A} and dual group $\widehat{\mathcal{U}}$:

Spec(\mathcal{A}): characters on abelian algebra $\mathcal{A} = \mathcal{U}''$ $\widehat{\mathcal{U}}$: group characters γ on abelian group $\mathcal{U} \subset \mathcal{A}$ s.t. $\gamma(u_1u_2) = \gamma(u_1)\gamma(u_2), \ \gamma(e) = 1 \ (u_1, \ u_2 \in \mathcal{U}).$

 $Spec(\mathcal{A}) \hookrightarrow \widehat{\mathcal{U}}$ through $Spec(\mathcal{A}) \ni \chi \longmapsto \chi \upharpoonright_{\mathcal{U}} \in \widehat{\mathcal{U}}$, but the opposite direction not guaranteed!

$$(Spec(\mathcal{A}) \simeq \widehat{\mathcal{U}}$$
 very close to \mathcal{M} : type I)

 $\implies \textbf{Distinction} \text{ between } \mathcal{U} \text{ as abstract group and} \\ \text{unitary group } \mathcal{U} \subset \mathcal{M} \text{ embedded in } \mathcal{M} \text{ by group} \\ \end{cases}$

homomorphism $E : \mathcal{U} \hookrightarrow \mathcal{U}(\mathcal{M})$ associated with $\mathcal{A} \hookrightarrow \mathcal{M}$:

$$E(u) = \int_{\gamma \in \widehat{\mathcal{U}}} \gamma(u) dE(\gamma) \quad (u \in \mathcal{U}),$$

where dE is an \mathcal{M} -valued spectral measure $E(\Delta) = E(\chi_{\Delta})$ defined for Borel sets Δ in $\widehat{\mathcal{U}}$.

iv) K-T operator V on $L^2(\widehat{\mathcal{U}}) \otimes L^2(\widehat{\mathcal{U}})$ in our context:

 $(V\xi)(\gamma, \chi) := \xi(\gamma, \gamma^{-1}\chi) \text{ for } \gamma, \chi \in \widehat{\mathcal{U}}, \ \xi \in L^2(\widehat{\mathcal{U}}).$ \Longrightarrow Representation $E_*(V) = \int_{\gamma \in \widehat{\mathcal{U}}} dE(\gamma) \otimes \lambda_{\gamma}$ of V on $L^2(\mathcal{M}) \otimes L^2(\widehat{\mathcal{U}})$ defined by

$$E_*(V)(\xi_{\Delta} \otimes |\chi\rangle) = \int_{\gamma \in \Delta} dE(\gamma)\xi_{\Delta} \otimes |\gamma\chi\rangle, \quad (1)$$

for $\gamma, \chi \in \widehat{\mathcal{U}}, \quad \xi_{\Delta} \in E(\Delta)L^2(\mathcal{M}),$

satisfying modified pentagonal relation,

$$E_*(V)_{12}E_*(V)_{13}V_{23} = V_{23}E_*(V)_{12}.$$

 $(L^2(\mathcal{M}))$: standard-form representation space of \mathcal{M})

Neutral position of measuring pointer = identity character $\iota \in \widehat{\mathcal{U}}$, $\iota(u) \equiv 1$ ($\forall u \in \mathcal{U}$).

(For non-cpt \mathcal{U} , \nexists vector $|\iota\rangle \in L^2(\mathcal{U})$ corresponding to $\iota \in \widehat{\mathcal{U}}$, but invariant mean $m_{\mathcal{U}}$ behaves as $\langle \iota | \cdots | \iota \rangle$ owing to amenability of abelian \mathcal{U} .)

 \implies By Eq. (1) with $\chi = \iota$: neutral position $\iota \in \widehat{\mathcal{U}}$, correlation required for measurements ("perfect correlation" due to Ozawa [13]),

$$E_*(V)(\xi_{\gamma} \otimes |\iota\rangle) = \xi_{\gamma} \otimes |\gamma\rangle \qquad (\forall \gamma \in \widehat{\mathcal{U}}),$$

is established between states ξ_{γ} of Micro-system \mathcal{M} and $|\gamma\rangle$ of measuring system \mathcal{A} (if $\hat{\mathcal{U}}$ is *discrete*). For generic state $\xi = \sum_{\gamma \in \hat{\mathcal{U}}} c_{\gamma} \xi_{\gamma}$ of \mathcal{M} , *uncorrelated* initial state $\xi \otimes |\iota\rangle$ is transformed by $E_*(V)$ into *correlated* one:

$$E_*(V)(\xi\otimes |\iota
angle) = \sum_{\gamma\in\widehat{\mathcal{U}}} c_\gamma \xi_\gamma\otimes |\gamma
angle.$$

By this correlation, *one-to-one* correspondence is materialized between ξ_{γ} of \mathcal{M} and measured data γ on the pointer.

v) Mathematical definition of **instrument** $\Im = (\text{com-pletely})$ positive operation-valued measure:

$$\begin{aligned} \mathfrak{I}(\Delta|\omega_{\xi})(B) &:= (\omega_{\xi} \otimes m_{\mathcal{U}})(E_{*}(V)^{*}(B \otimes \chi_{\Delta})E_{*}(V)) \\ &= (\langle \xi| \otimes \langle \iota|)E_{*}(V)^{*}(B \otimes \chi_{\Delta})E_{*}(V)(|\xi\rangle \otimes |\iota\rangle) \end{aligned}$$

which unifies all ingredients relevant to a measurement. For an initial state $\omega_{\xi} = \langle \xi | (-)\xi \rangle$ of \mathcal{M} , $p(\Delta|\omega_{\xi}) = \Im(\Delta|\omega_{\xi})(1)$: probability for measured values of observables in \mathcal{A} to be found in a Borel set Δ and

 $\Im(\Delta|\omega_{\xi})/p(\Delta|\omega_{\xi})$: final state realized after detection of measured values in Δ [14].

3 Crossed Product $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$ = System + Apparatus [7]

i) Relevance of **Fourier-Galois duality**: By *Fourier* transform \mathcal{F} (as unitary transf.: $L^2(\mathcal{U}, du) \to L^2(\widehat{\mathcal{U}}, d\gamma)$),

$$(\mathcal{F}\xi)(\gamma) := \int_{\mathcal{U}} \overline{\gamma(u)}\xi(u) du, \quad \gamma \in \widehat{\mathcal{U}},$$

K-T operator V on $\widehat{\mathcal{U}}$ is transformed into K-T operator $W \in \lambda(\mathcal{U})'' \otimes L^{\infty}(\mathcal{U})$ on \mathcal{U} :

 $W := (\mathcal{F} \otimes \mathcal{F})^{-1} V(\mathcal{F} \otimes \mathcal{F}),$ $(W\xi)(u,v) := \xi(vu,v) \quad \text{for } \xi \in L^2(\mathcal{U} \times \mathcal{U}), u, v \in \mathcal{U}$

satisfying pentagonal and intertwining relations:

$$W_{12}W_{13}W_{23} = W_{23}W_{12},$$

$$W(\lambda_u \otimes \lambda_u) = (I \otimes \lambda_u)W \quad (u \in \mathcal{U})$$

for regular representation $\lambda = \lambda^{\mathcal{U}}$ of \mathcal{U} .

ii) Representation EW of W through $E : \mathcal{A} \hookrightarrow \mathcal{M}$: $EW := (E \otimes id)(W) \in \mathcal{M} \otimes L^{\infty}(\mathcal{U})$ satisfies

$$(EW)_{12}(EW)_{13}W_{23} = W_{23}(EW)_{12},$$

$$EW(u \otimes \lambda_u) = (I \otimes \lambda_u)EW.$$

With adjoint action $\alpha = Ad$ of \mathcal{U} on \mathcal{M} , we have *-automorphism $r(\alpha)$ in $\mathcal{M} \otimes L^{\infty}(\mathcal{U})$:

$$(r(\alpha)(X))(u) := \alpha_u^{-1}(X(u))$$
 (2)
for $X \in \mathcal{M} \otimes L^{\infty}(\mathcal{U}), u \in \mathcal{U},$

implemented by EW^* ,

$$r(\alpha)(X) = (EW)X(EW)^*.$$

iii) (W*-)crossed product $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$: W*-crossed product $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$ is defined by the von Neumann algebra generated by $r(\alpha)(\mathcal{M} \otimes 1)$ and by $\mathbb{C} \otimes \lambda(\mathcal{U})''$:

$$\mathcal{M}\rtimes_{lpha}\mathcal{U}:=r(lpha)(\mathcal{M}\otimes \mathbf{1})\vee(\mathbb{C}\otimes\lambda(\mathcal{U})'').$$

 $\implies \textbf{Crossed product } \mathcal{M} \rtimes_{\alpha} \mathcal{U} \text{ composed of object}$ system + measuring system is due to Fourier transform $W = (\mathcal{F} \otimes \mathcal{F})^{-1} V (\mathcal{F} \otimes \mathcal{F})$ of K-T operator Vresponsible for measurement coupling + instrument

3.1 Takesaki duality and physical meaning of crossed product

i) Takesaki duality as Galois-Fourier duality:

$$egin{array}{rcl} (\mathcal{M}
times_lpha \mathcal{U})
times_{\hatlpha} \widehat{\mathcal{U}} &=& \mathcal{M}\otimes B(L^2(\mathcal{U})) \ &=& \mathcal{M} \ (: \ ext{if properly }\infty) \end{array}$$

 $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$: to set up the measurement coupling to yield measured values $Spec(\mathcal{A}) \subset \widehat{\mathcal{U}}$

 $(\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \rtimes_{\hat{\alpha}} \hat{\mathcal{U}}$ to recover the original system \mathcal{M} from the coupling system $\mathcal{M} \rtimes_{\alpha} \mathcal{U} + \mathbf{observed} \ \mathbf{data}$

structure: $\mathcal{A} \subset (\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \underset{\hat{\alpha}}{\frown} \widehat{\mathcal{U}}$ (encoded in the instrument)

Same structure found also in sector theory: field algebra $\mathfrak{F} \curvearrowright G \Longrightarrow \mathfrak{F} \rtimes_{\tau} G \simeq \mathfrak{F}^G = \mathfrak{A}$: observable algebra $\overset{\mathsf{DHR criterion}}{\Longrightarrow}$ sector data $= \hat{G} \curvearrowright_{\hat{\tau}} \mathfrak{A}$ $\Longrightarrow \mathfrak{A} \rtimes_{\hat{\tau}} \hat{G} = (\mathfrak{F} \rtimes_{\tau} G) \rtimes_{\hat{\tau}} \hat{G} = \mathfrak{F} \otimes B(L^2(G)) = \mathfrak{F}$

 \Downarrow

ii) Information on $\mathcal{M} \rtimes_{\alpha} \mathcal{U}$ is crucial not only for generating data to be measured but for recovering \mathcal{M} from the observational data!

To proceed further, we tacitly assume a mathematical condition called *semi-duality* [4] of action α on \mathcal{M} : if \exists unitary $v \in \mathcal{M} \otimes \lambda(G)''$ s.t. $\overline{\alpha}(v) =$ $(v \otimes 1)(1 \otimes V')$, with a K-T operator V' defined by $(V'\xi)(g_1, g_2) = \xi(g_1g_2, g_2)$ and $\overline{\alpha} := (\iota \otimes \sigma) \circ (\alpha \otimes \iota)$, a G-action α on \mathcal{M} is called **semi-dual** $\Longrightarrow \mathcal{M} \rtimes_{\alpha}$ $\mathcal{U} = \left[\mathcal{M} \otimes B(L^2(\mathcal{U}))\right]^{\alpha \otimes \lambda} = \mathcal{M}^{\alpha} \otimes B(L^2(\mathcal{U}))$ \implies determination $\mathcal{M} \rtimes_{\alpha} \mathcal{U} = \mathcal{M}^{\alpha} \otimes B(L^{2}(\mathcal{U}))$ of algebra $\mathcal{M}^{\alpha} = \mathcal{A}$ of observables to be measured + reservoir system $B(L^{2}(\mathcal{U}))$ to **amplify** \mathcal{A} with damping other effects:

 $\iff \text{ strong Morita equivalence } \mathfrak{A}_1 \approx \mathfrak{A}_2 \text{ of algebras} \\ \mathfrak{A}_1, \mathfrak{A}_2 \iff Rep_{\mathfrak{A}_1} \simeq Rep_{\mathfrak{A}_1} \\ \iff \text{ stability } \mathfrak{A}_1 \otimes \mathcal{K} \simeq \mathfrak{A}_2 \otimes \mathcal{K}.$

Physically convenient for ensuring stability of the system against noise perturbations from its neglected surroundings.

Let \mathcal{M} and $\mathcal{A} = \mathcal{A}' \cap \mathcal{M}$ be, respectively, a properly infinite v.N. algebra and its MASA generated by a loc. cpt. abelian unitary group $\mathcal{U} \subset \mathcal{A} = \mathcal{U}'' = \mathcal{M}^{\alpha(\mathcal{U})}$. If semi-duality holds with dual co-action $\hat{\alpha}$ of $\hat{\mathcal{U}}$ on $\mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))$, Takesaki duality [3] for \mathcal{M} ,

 $(\mathcal{M} \rtimes_{\alpha} \mathcal{U}) \rtimes_{\hat{\alpha}} \hat{\mathcal{U}} \simeq \mathcal{M} \otimes B(L^{\infty}(\mathcal{U})) \simeq \mathcal{M},$ and for \mathcal{A} ,

 $(\mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))) \rtimes_{\widehat{\alpha}} \widehat{\mathcal{U}}) \rtimes_{\mu} \mathcal{U} \simeq \mathcal{A} \otimes B(L^{\infty}(\widehat{\mathcal{U}})),$

can be decomposed into the following isomorphisms: (i) $\mathcal{M} \rtimes_{\alpha} \mathcal{U} \simeq \mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))$ [: amplification process],

(ii) $(\mathcal{A} \otimes B(L^{\infty}(\mathcal{U})) \rtimes_{\hat{\alpha}} \widehat{\mathcal{U}} \simeq \mathcal{M}[: \text{ reconstruction}].$

Isomorphism ii) \implies recovery of unknown microalgebra \mathcal{M} of quantum observables via crossed product $(\mathcal{A} \otimes B(L^{\infty}(\mathcal{U})) \rtimes_{\hat{\alpha}} \hat{\mathcal{U}}$ from macroscopically visible MASA \mathcal{A} and $B(L^{\infty}(\mathcal{U})) = \text{CCR consisting of}$ $\mathcal{U} + measured data \hat{\mathcal{U}}$ coupled through $\hat{\mathcal{U}}$ -action $\hat{\alpha}$. i) \iff ii): mutually equivalent by Takesaki duality [3], and controlled by K-T operators V and $W = (\mathcal{F} \otimes \mathcal{F})^{-1}V(\mathcal{F} \otimes \mathcal{F})$ generating the measurement coupling E_*V . For instrument \mathfrak{I} , we have

 $\Im(\Delta|\omega_{\xi})(B) := (\omega_{\xi} \otimes m_{\mathcal{U}})(r(\hat{\alpha})(B \otimes \chi_{\Delta}))$ with $B \otimes \chi_{\Delta} \in \mathcal{M} \rtimes_{\alpha} \mathcal{U}$. Thus, 1st crssd prdct $\mathcal{M} \underset{\alpha}{\rtimes} \mathcal{U} =$ Micro-Macro composite system with $\widehat{\mathcal{U}}$ -action $\underset{\alpha}{\curvearrowright} (\mathcal{M} \underset{\alpha}{\rtimes} \mathcal{U}) \xrightarrow{\text{instrument } \Im}$ readable data $\in Spec(\mathcal{A}) \subset \widehat{\mathcal{U}}$ of \mathcal{A} \Longrightarrow 2nd crssd prdct $(\mathcal{M} \underset{\alpha}{\rtimes} \mathcal{U}) \underset{\widehat{\alpha}}{\rtimes} \widehat{\mathcal{U}} \simeq \mathcal{M}$: Micro system recovered from Macro data $\widehat{\mathcal{U}}$ of $\mathcal{A} \Longrightarrow$ bidirectionality OK!

4 Reconstruction of Micro-Algebra \mathcal{M} & its Type-Classification

Recovery of \mathcal{M} from dyn. sys. $\mathcal{A} \otimes B(L^{\infty}(\mathcal{U})) \bigoplus_{\hat{\alpha}} \hat{\mathcal{U}}$ through $(\mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))) \rtimes_{\hat{\alpha}} \hat{\mathcal{U}} \simeq \mathcal{M}$ \Downarrow i) Data of dynamical system $\mathcal{A} \otimes B(L^{\infty}(\mathcal{U})) \bigoplus_{\hat{\alpha}} \hat{\mathcal{U}}$ \downarrow ii) modular data of $(\mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))) \rtimes_{\hat{\alpha}} \hat{\mathcal{U}}$ \downarrow iii) structure of \mathcal{M} ([7]) States (within a sector corresponding to $\mathcal{M}) \longleftrightarrow$ $Spec(\mathcal{A}) =$ classifying space of intrasectorial states in harmony with our general strategy in Sec.2 in the sense of intrasectorial analysis = [sector analysis of coupled system].

i) Dynamical system $\mathcal{N} \underset{\hat{\alpha}}{\frown} G$ with $\mathcal{N} := \mathcal{A} \otimes B(L^{\infty}(\mathcal{U}))$ and $G = \hat{\mathcal{U}}$ and its central part: $\mathcal{A} \underset{\beta}{\frown} G$ with $\mathfrak{Z}(\mathcal{N}) = \mathcal{A}$.

Proposition 3 For W*-crossed product $Q = A \rtimes_{\beta} G$ of an abelian dynamical system $A \bigcap_{\beta} G$: (i) action β : free $\iff A$: maximally abelian in Q: $A = Q \cap A'$; (ii) when β is free, Q is a factor $\iff \beta$ is ergodic. In this case, $\mathfrak{Z}(Q) = A^{\beta}$.

Central ergodicity of $\hat{\alpha}$ is related with factoriality of crossed product $\mathcal{M} = \mathcal{N} \rtimes_{\hat{\alpha}} G$:

For $\hat{\alpha}$ free on the centre, the equalities hold

$$\mathfrak{Z}(\mathcal{M}) = \mathfrak{Z}(\mathcal{Q}) = r(\hat{\alpha})(\mathfrak{Z}(\mathcal{N})^{\hat{\alpha}} \otimes 1),$$

and hence, the following conditions are equivalent: (i) action $\hat{\alpha}$ is ergodic on the centre; (ii) $\mathcal{M} = \mathcal{N} \rtimes_{\hat{\alpha}} G$: factor; (iii) $\mathcal{Q} = \mathcal{A} \rtimes_{\beta} G$: factor.

ii) Modular data of $\mathcal{M} = \mathcal{N} \rtimes_{\hat{\alpha}} G$:

$$\begin{pmatrix} \widetilde{\Delta}^{it}\xi \end{pmatrix}(s) = \Delta^{it}_{\phi \circ \widehat{\alpha}_s, \phi}\xi(s), \\ \begin{pmatrix} \widetilde{J}\xi \end{pmatrix}(s) = U_{\phi}(s)J_{\phi}\xi(s^{-1}), \quad \xi \in L^2(G, \mathfrak{H}_{\phi}), s \in G.$$

 $\Delta_{\phi \circ \hat{\alpha}_s, \phi}$: relative modular operator from n.f.s. weight ϕ of \mathcal{N} to $\phi \circ \hat{\alpha}_s$

Connes cocycle derivative: $V_t = (D(\phi \circ \hat{\alpha}_s) : D\phi)_t = \Delta_{\phi \circ \hat{\alpha}_s, \phi}^{it} \circ \Delta_{\phi}^{-it}$

Dual weight $\widehat{\phi}$ of $\mathcal{N} \rtimes_{\widehat{\alpha}} G$ is defined as such a n.f.s. weight given for $X \in \mathcal{N}_+$ by

$$\widehat{\phi}(X) = \begin{cases} \|\xi\|^2, \quad X = \pi_l(\xi)^* \pi_l(\xi), \quad \xi \in \mathfrak{B}, \\ +\infty, \end{cases}$$

where \mathfrak{B} is the set of left bounded vector (with left action π_l).

Modular automorphism group $\sigma^{\widehat{\phi}}$ of dual weight $\widehat{\phi}$ is given by $\sigma_t^{\widehat{\phi}}(X) = \widetilde{\Delta}^{it} X \widetilde{\Delta}^{-it}$ for $X \in \mathcal{N} \rtimes_{\widehat{\alpha}} G$, whose action on $\mathcal{N} \rtimes_{\widehat{\alpha}} G$ can be specified by

$$\sigma_t^{\widehat{\phi}}(r(\widehat{lpha})(X\otimes 1)) = r(\widehat{lpha})(\sigma_t^{\phi}(X)\otimes 1), \quad X \in \mathcal{N}, t \in \mathbb{R}, \ \sigma_t^{\widehat{\phi}}(\lambda(s)) = \lambda(s)r(\widehat{lpha})((D\phi \circ \widehat{lpha}_s : D\phi)_t \otimes 1), \ s \in G.$$

iii) Structure of $\mathcal{M} = \mathcal{N} \rtimes_{\hat{\alpha}} G$:

Theorem 4 $\mathcal{M} = \mathcal{N} \rtimes_{\hat{\alpha}} G$ of centrally ergodic dynamical system $(\mathcal{N} \curvearrowleft_{\hat{\alpha}} G)$ has the same von Neumann factor type as $\mathcal{Q} = \mathfrak{Z}(\mathcal{N}) \rtimes_{\hat{\alpha}} G$. Namely, the following criteria hold: (i) \mathcal{M} is of type $I \iff dyn$. sys. $(\mathfrak{Z}(\mathcal{N}) \frown_{\hat{\alpha}} G)$ on the centre is isomorphic to the flow on $L^{\infty}(G)$: $(\mathfrak{Z}(\mathcal{N}) \frown_{\hat{\alpha}} G) \cong (L^{\infty}(G) \frown_{Ad\lambda_G} G);$ (ii) \mathcal{M} is of type $II \iff (\mathfrak{Z}(\mathcal{N}) \frown_{\hat{\alpha}} G)$ is not isomorphic to $(L^{\infty}(G) \frown_{Ad\lambda_G} G)$ and $\mathfrak{Z}(\mathcal{N})$ admits $\hat{\alpha}$ -inv. measure with support $\mathfrak{Z}(\mathcal{N});$ (iii) \mathcal{M} is of type $III \iff \mathfrak{Z}(\mathcal{N})$ admits no $\hat{\alpha}$ -inv. measure with support $\mathfrak{Z}(\mathcal{N})$.

"Feedback" necessary here!: in view of the above i), our starting assumption $[\mathcal{M} \cap_{\alpha} \mathcal{U}]$ with $\alpha = Ad$: adjoint action of \mathcal{U}] was too restrictive to recover \mathcal{M} of non type I !!

However, the assumption $\alpha = Ad$ is simply due to an oversimplification (*common* in measurement

theory) to neglect intrinsic dynamics of microsystem \mathcal{M} keeping only coupling terms between \mathcal{M} and apparatus \mathcal{A} ! So, if intrinsic dynamics of \mathcal{M} is retained, the above results allow us to recover a generic Micro-Algebra \mathcal{M} . I.e., we have such a flow chart as [states \rightarrow algebra \rightarrow dynamics + classifying space].

For $\mathcal M$ of type III: modular structure of $\mathcal M$ is completely determined by that of $\mathcal A$

 \implies modular spectrum $S(\mathcal{M})$ depends on \mathcal{A} and $\widehat{\mathcal{U}}$: namely, modular spectrum is given by

$$S(\mathcal{M}) = \bigcap \{ Spec(\Delta_{\phi \circ \hat{\alpha}_{\gamma}, \phi}) : \phi \in \mathcal{W}_{\mathcal{A}} \}$$

where $\mathcal{W}_{\mathcal{A}}$ is the set of all normal semi-finite faithful weights on \mathcal{A} and $\Delta_{\phi \circ \hat{\alpha}_{\gamma}, \phi} = [D(\omega \circ \hat{\alpha}_{\gamma}) : D\omega]_t \Delta_{\phi}$.

By Connes theory:

(1) \mathcal{M} : type III $_{\lambda}$, (0 < λ < 1), \iff $S(\mathcal{M}) = \{\lambda^n : n \in \mathbb{Z}\} \cup \{0\}$,

(2) \mathcal{M} : type III₀ \iff $S(\mathcal{M}) = \{0, 1\}$,

(3) \mathcal{M} : type III₁ \iff $S(\mathcal{M}) = \mathbb{R}_+$.

References

- [1] Ojima, I., Micro-macro duality in quantum physics, pp.143–161 in Proc. Intern. Conf. "Stochastic Analysis: Classical and Quantum", World Scientific, 2005.
- [2] Tatsuuma, N., A duality theorem for locally compact groups, J. Math. Kyoto Univ. 6 (1967),187-193; Enock, M. and Schwartz, J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer, 1992; Baaj, S. and G. Skandalis, Ann. Scient. Ècole Norm. Sup. 26 (1993), 425-488.
- [3] Takesaki, M.: Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131, 249-310 (1973).
- [4] Nakagami, Y. and Takesaki, M., Lecture Notes in Math. **731**, Springer, 1979.

- [5] Doplicher, S., Haag, R. and Roberts, J.E., Comm. Math. Phys. **13** (1969), 1-23; **15** (1969), 173-200; **23** (1971), 199-230; **35** (1974), 49-85.
- [6] Doplicher, S. and Roberts, J.E., Comm. Math. Phys. **131** (1990), 51-107; Ann. Math. **130** (1989), 75-119; Inventiones Math. **98** (1989), 157-218.
- [7] Ojima, I. and Takeori, M., How to observe quantum fields and recover them from observational data? –Takesaki duality as a Micro-Macro duality–, in preparation.
- [8] Ojima, I., A unified scheme for generalized sectors based on selection criteria –Order parameters of symmetries and of thermality and physical meanings of adjunctions–, Open Sys. and Inf. Dyn., **10** (2003), 235-279; Temparature as order parameter of broken scale invariance, Publ. RIMS **40**, 731-756 (2004).

- [9] Dixmier, J., C*-Algebras, North-Holland, 1977;
 Pedersen, G., C*-Algebras and Their Automorphism Groups, Academic Press, 1979.
- [10] Buchholz, D., Ojima, I. and Roos, H., Ann. Phys. (N.Y.) 297 (2002), 219 - 242.
- [11] Ojima, I., pp.365-384 in "A Garden of Quanta", World Scientific (2003) (condmat/0302283).
- [12] Takesaki, M., A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math. **91** (1969), 529-564.
- [13] Ozawa, M., Perfect correlations between noncommuting observables, Phys. Lett. A, 335, 11-19 (2005).
- [14] Ozawa, M., J. Math. Phys. 25, 79-87 (1984);
 Publ. RIMS, Kyoto Univ. 21, 279-295 (1985);
 Ann. Phys. (N.Y.) 259, 121-137 (1997).