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Abstract

The deep and important significance of the so-
called “Quantum-Classical Correspondence” will be
elaborated and explained from the mathematical-
physical viewpoint of “Micro-Macro Duality”. In
the operator-algebraic formulation this will be shown
to be implemented in the form of Takesaki duality
of crossed products as a specific realization of the
essence of Galois-Fourier duality.
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1 Quantum-Classical Correspondence

and Micro-Macro Duality

1) Quantum-classical correspondence (g-c correspon-
dence, for short) = classical macro-objects as con-

densates of oo-quanta in micro-quantum system
“Micro-Macro Duality” [1]:

a) Emphasis on bi-directionality for controlling [Mi-

cro = Macro]

Bi-directionality in [deduction (top-down) vs. in-
duction (bottom-up)]

Importance of bi-directionality as [accessibility to
actual physical systems] + [feedback]

Cf. Standard approach = [one-directional deduc-
tions] of macro-phenomena from “ultimate” theory

of microscopic world



— What basis for starting postulates in a theoret-
ical deduction?

Starting hypothesis 7 'H: an ad hoc theoretical pos-
tulate

—Predictions deduced from the theory

I<— measurement processes

Experimental data £€X

—> Comparison between theory & experiments: to
check the starting 7'H to be ‘“verified” as one of
the possible candidates as sufficient conditions for

TH \
EX: TH1 — EX+errors
)

b) Duality: mathematical formulation(s) of bi-directionality
= mathematical dualities (or categorical adjunc-

tions) between the algebras of Micro-scopic systems

and Macro = its states or representations detectable
macroscopically

e.g., Fourier-Pontryagin-Tannaka-Krein-Tatsuuma du-
ality of [group G = G or Rep(G)] [2]



Takesaki duality of crossed products [3, 4]: (M X
G) x G ~ M ® B(L*(Q))

c) Mathematical possibility for bi-directionality sug-
gested by sector theory in algebraic QFT:

§: field algebra \ G: group of symmetry
— observable algebra 2 = FC as fixed-point sub-
algebra of GG-invariants

A(= ) + something — [§ G

reconstruction

as inverse problem

What are “something” & [reconstruction in inverse
direction]?:

“something” =D(oplicher-)H(aag-)R(oberts) selec-
tion criterion to select physically relevant states [5]

—> DR category 7 (C End(2l)) [g] Rep(G)

A Tannaka-Krein dualit
«—— (: sectors — Y G



Reconstruction [6] of § v\ G via crossed product

F=3° %G~ G=Gal(F/A): Galois group

l.e., § v G (: Micro) is recovered from “Macro
data” T of sectors of %l through Galois extension
by solving DHR criterion as an “equation’ involving
21 as coefficient ring

Thus, we need, in two steps,

2) Classification of states-representations of algebra
20 of physical variables into sectors + intrasectorial

structures

Sec.1.1 [Q-C Correspondence l]: sectors = factor
rep.'s = pure phases «— centre of a given represen-
tation ()" = M according to quasi-equivalence
— macroscopic order parameters —> classifying space
of sectors = Spec(3(M))

[Q-C Correspondence Il] : operationally meaningful
determination of intrasectorial structures of a factor



M (describing a sector) by means of a MASA A =
Ao mM=u"

U

Sec.2: Q-C Correspondence (l1): How to Detect In-
side of Sectors [1]

MASA A and measurement scheme by Kac-Takesaki
operator — instrument:

— measurement coupling to make a composite sys-
tem of M + measuring system identified with A:
determined by K-T operator of U

— what is a K-T operator? — instrument

States (within a sector corresponding to M) «——
Spec(A)= classifying space of intrasectorial states

[: Analogy to roots of a semi-simple Lie algebra wrt
a Cartan subalgebra]



Sec.3: Crossed Product M X, U to Couple System
& Apparatus [7]

Measurement coupling = crossed product M x, U
composed of object system 4+ measuring system:
— determination M xo U = A ® B(L*U4)) of
algebra A of observables to be measured + reservoir
system B(L?(U)) to amplify A with damping others
(under the assumption of semi-duality)

— Takesaki duality (M xol)x3U = MQB(L3(U)) =
M Galois-Fourier duality to generate measured
values Spec(A) C U + to recover the original sys-
tem M from the measurement situation with M X

U & observed data structure: A C (M xolUd) AU
«

(with the latter encoded in the corresponding instru-
ment)

The same structure as above found also in sector
theory:
field algebra § A G = § X+ G ~ TG = A: ob-

DHR criteri A
servable algebra —=""" sector data = (§ 2

:>Q[>4§\.é: (SXITG) N$GZS®B(L2(G)) :g



Sec.4: Reconstruction of Micro-Algebra M & its
Type-Classification [7]

Starting from the problem of state determination
(inside a sector): M — M X U: measurement
coupling

—> operationally meaningful reconstruction of al-
gebra M through crossed product (M X U)X qUd =
M

Classification scheme formulated in the classifying
space Spec(A) v U reveals that the starting as-
(8%

sumption of & = AdY(= external coupling only!)
can reproduce only M of type |

—> Operational detection of the intrinsic dynamics
« with deviation from AdY: necessary!

conceptually very important observation to sup-
port the above bi-directionality

NB. Subtleties of non-type | algebras (e.g., typical
cases of type Il in relativistic QFT): a state within
a sector cannot uniquely be specified by means of
quantum observables for lack of minimal projec-
tions.



1.1 Q-C Correspondence () Sectors &

centre = order parameters

[Q-C Correspondence I|= Major gap between Quan-
tum Micro and Classical Macro, in terms of su-
perselection sectors and intersectorial structures de-

scribed by order parameters [3]:

At this level, clear-cut separation between quantum
and classical is OK by order parameters to specify a
sector

def quasi-equivalence classes
Sectors (or pure phases) = of factor states/rep.’s

faithfully parametrized by Spec of centre of a rel-
evant representation of algebra of micro-quantum
observables to be interpreted as macroscopic order

parameters

Quasi-equivalence [9]= unitary equivalence up to
multiplicity



commutative algebra of
macroscopic order parameters

centre (of rep.’s) =
—> (superselection) sector structure consisting of a
family of sectors (or pure phases) described math-
ematically by factor states and representations

Totality of sectors =— mixed phase involving both
classical and quantum aspects.

Intersectorial structure = coexistence of and gap be-
tween quantum(=intrasectorial) and classical(=intersectoria
aspects.

~ Spec(centre): classifying space of sectors to dis-
tinguish among different sectors

—> At this level, Micro-Macro relation reduces to
the relations between

Quantum Ve Classical
(=non-commutative) ~~ (=commutative)

—> A unified scheme for Micro-Macro relations can
be formulated on the basis of selection criteria [8]:



i) |q:

o _ 4 _
selection L classification &
o adjunction ) ] ]
iv) | criterion: = interpretation of i)
_ i) = ) | _ w.r.t. ii): i) — i) |

(Micro)

generic states
of object system

—>ii) |c:
!

(Macro)

iii) map to compare i) with ii)

reference sys.
with classifying
space of sectors |

as a natural generalization of

Example 1 Manifold M with local charts {(U, ) :
Uy, — R™)}:

i)= local neighbourhoods U, ii)= R™,

iii)= local charts ) : Uy — R",

iv)= geometrical interpretation in terms of geomet-
rical invariants such as homology, cohomology, ho-
motopy, K-groups, characteristic classes, etc., etc.



Example 2 Non-equilibrium local states character-
ized by localizing generalized equilibrium states with
fluctuating thermal parameters [10, 11]:

i) = set E, of states w with local energy bound
w((1+ Hp)™) < oo,

ii) = classifying space By of thermodynamic phases
with fluctuating parameters (3, ) described by prob.
meas.’'s p € M4 (By) =: Th.

iii) = comparison of unknown w with known refer-

ence statesw, = C*(p) = /By dp(8, n)wg,,, through
examining criterion w = C*(p) via “quantum fields

at x” € T (justified by energy bound in i)),
iv) = adjunction (as localized 0-th law of thermo-

dynamics), |w = C*(p)] = [(C*)~H(w) i) pl.

2/ Ta] (w,C*(p)) "=° [Th/C(T2)] (C*)"L(w), p).

—17 adjoint to c—q channel

with g— c channel “(C*)
C* (from classical reference sys. to generic quantum
states) achieves two goals, a) to identify a local ther-
mal state w and b) to give thermal interpretation

p = (C*)(w) of w in terms of known vocabu-
C*(7z)

lary p € Th.



2 Q-C Correspondence (I1): How

to Detect Inside of Sectors

Intrasectorial structures and measurement processes:
To describe intrinsic quantum structures within a
sector, not only theoretically but also operationally,
necessarily involving quantum measurements.

2.1 Maximal abelian subalgebra

MASA A = maximal abelian subalgebra consisting
of simultaneously measurable observables for speci-
fying states inside a sector described by a factor M
i.e., pointer positions on Spec(.A) of the measuring
apparatus should determine a microscopic quantum
state of M (**)

Reformulation necessary of the traditional MASA
A’ = A to accommodate quantum systems with



oco-degrees of freedom (with non-type | representa-
tions) such as quantum fields: A =.A"'N M

INB: A/ = A — M: typel ") A =ACM =
McA=ACM=—=7 M=MnM=3(M)]
—> measuring apparatus: identified with MASA
A=A"NnM

—> need to find a coupling between algebras M
and A to realize (**)!!

To solve this problem, use 4 U/: abelian Lie group
with Haar measure du which generates MASA A:

U c uUulA),A=u"
—> W*-dynamical system M A U

with A = ./\/la(u) and o = Ad.

—> relevance of group duality & Galois extension
(=Fourier-Galois duality) expected naturally
MASA + measurement coupling to make a compos-
ite system of M + measuring system A: determined
by Kac-Takesaki operator [12, 4, 2] (K-T operator,
for short) of dual group U

— what is a K-T operator? — instrument



2.2 K-T operator & instrument [1]

i) Hopf-(Kac-)von Neumann algebra M(C B(9))
with Haar weight & coproduct I : M — M ® M

r

M —> MM
[ lid®Tl
MM — MMM

®id

i) K-Toperator V € U((M @ M) )(CU(HR H)):
defined as the implementer of I,

N(z) = V(1®x2)V forze M
VioVizVoz = Vo3Vip on H ® H R H

called pentagonal relation to express coassociativity
of I'. (Vz-j acts on i-th and j-th factors in HRHRH)

intertwining relation : V(A®:) =A@ ANV
Fourier transform : A : My > w — A(w)
- = (w®id)(V)e M
s.t. AMwi *wr) = A(w1) A (w2)

convolution product in My : wi*xwy:=wijQuwool



Group duality can be formulated as Kac duality [2]
V —— V:=0oV*s (with c(£ ®7) = n®£).

For M = L°°(G, dg) with locally compact group G
with Haar measure dg, K-T operator V' is given on
L?(G x G) by

(VE)(s,t) := &(s, 3_175) for £ € LQ(GXG), s,t € @G,

or symbolically, V'|s,t) = |s, st) in Dirac-type nota-
tion.

iii) Comparison between Spec(.A)) of MASA A and
dual group U:

Spec(A): characters on abelian algebra A = U"
U: group characters v on abelian group U C A s.t.

Y(uruo) = y(u1)y(u2), v(e) =1 (u1, up € U).

Spec(A) — U through Spec(A) > x — x [y€ U,
but the opposite direction not guaranteed!

(Spec(A) ~ U very close to M: type |)

—> Distinction between U/ as abstract group and
unitary group U4 C M embedded in M by group



homomorphism E : U — U(M) associated with
A — M:

Bu) = [ -A(dBR)  (ueu),

where dF is an M-valued spectral measure E(A) =
E(xp) defined for Borel sets A in U.

iv) K-T operator V on L2(U{) ® L?(U) in our con-
text:

(VE(1,x) = &(v, 77 x) fory,x €U, &€ L*(U).
—> Representation F.(V) = f*yEZ/A{ dE(v) ® Ay of
V on L2(M) ® L2(U) defined by

E(V)ea® b)) = [ dE@Ea® ), (1)
for y,x €U, £&p € E(A)LA(M),
satisfying modified pentagonal relation,

Ex(V)12E«(V)13Va3 = Vo3 E«(V)12.

(L?(M): standard-form representation space of M)

Neutral position of measuring pointer = identity
character . € U, 1(u) =1 (Vu € U).



(For non-cpt U, Bvector |ty € L?(U) correspond-
ing to + € U, but invariant mean my,; behaves as
(t|---|t) owing to amenability of abelian U/.)

—> By Eq. (1) with x = ¢: neutral position ¢ €
U, correlation required for measurements ( “perfect
correlation” due to Ozawa [13]),

E(V)(E @) =&y  (Vyel),
is established between states ., of Micro-system M
and |v) of measuring system A (if U is discrete). For
generic state £ = nyeﬁ cy§~ of M, uncorrelated
initial state £ ® |¢) is transformed by F«(V') into
correlated one:

E:(V)(§® ) = ) &, @ ).
~eU
By this correlation, one-to-one correspondence is
materialized between §. of M and measured data
~ on the pointer.

v) Mathematical definition of instrument J = (com-
pletely) positive operation-valued measure:

I(Alwe)(B):=(we @ my)(E«(V)" (B @ xa)Ex(V))
= (( &l @ (L) E«(V)" (B @ xa)E«(V)(I§) ® |t)



which unifies all ingredients relevant to a measure-
ment. For an initial state we = ( §| (—)§) of M,
P(Alwe) = T(Alwe)(1): probability for measured
values of observables in A to be found in a Borel
set A and

J(Alwe)/p(Alwe): final state realized after detec-
tion of measured values in A [14].

3 Crossed Product M xo, U
= System + Apparatus [7]

i) Relevance of Fourier-Galois duality: By Fourier
transform F (as unitary transf.: L2(U, du) — L3(U, dv)),

(FOW = | Awewdu, el

K-T operator V' on U is transformed into K-T op-
erator W € A\(U)" @ L°>°(U) on U:

W = (F® F) V(F e F),
(WE)(u,v) = E(vu,v)  for £ € L2(U x U),u,v € U



satisfying pentagonal and intertwining relations:

WiaWi13Whs = WosWip,

for regular representation A\ = M of U.

ii) Representation EW of W through E : A — M:
EW = (F®1id)(W) e M ® L>®U) satisfies

(EW)12(EW)13Wo3 = Woz(EW)12,

With adjoint action o« = Ad of U on M, we have
*-automorphism r(a) in M ® L®°(U):

(r(e)(X))(u) : =ay (X (u)) (2)
for X € M®L>*WU),uelU,

implemented by EW™*,

r(a)(X) = (EW)X(EW)*.

iii) (W*-)crossed product M x U:
W*-crossed product M X U is defined by the von



Neumann algebra generated by r(a)(M ®1) and by
Ce XU)":
M MU = r(a)(M®1)V (Ce AXU)").

— Crossed product M x, U composed of object
system + measuring system is due to Fourier trans-

form W = (F®F) IV (F ®F) of K-T operator V

responsible for measurement coupling + instrument

3.1 Takesaki duality and physical mean-

ing of crossed product

i) Takesaki duality as Galois-Fourier duality:
(M xqU) xqgU = M® B(L*U))
= M (: if properly co)

M Xq U: to set up the measurement coupling to
yield measured values Spec(A) C U

(M Xq U) x5 U to recover the original system M
from the coupling system M x,U + observed data



structure: A C (M Xo U) ~ U (encoded in the
«

instrument)

Same structure found also in sector theory:
field algebra § A G =— FTx:G~3F¢ =9 ob-

DHR criterion
—

servable algebra sector data = G ~

:>Q[>4§\.é: (SX]TG) N$GZS®B(L2(G)) :S

Y

ii) Information on M X U is crucial not only for
generating data to be measured but for recovering
M from the observational data!

To proceed further, we tacitly assume a mathemat-
ical condition called semi-duality [4] of action « on
M: if 3 unitary v € MR MNG)" st. a(v) =
(v®1)(1® V"), with a K-T operator V' defined by
(V'€)(91, 92) = €(9192, g2) and @ := (1®0)o(a®@1),
a GG-action o on M is called semi-dual =— M X
U = |M e B(L2U))] B _ Mm@ BLAU))



— determination M xo U = M ® B(L*(U)) of
algebra M% = A of observables to be measured
+ reservoir system B(L?(U/)) to amplify A with
damping other effects:

<— strong Morita equivalence 2l = %I, of algebras
2y, Uz < Repg, ~ Repy,

<—> stability 21 K ~ 2> ® K.

Physically convenient for ensuring stability of the
system against noise perturbations from its neglected

surroundings.

Let M and A = A'NM be, respectively, a properly
infinite v.N. algebra and its MASA generated by a
loc. cpt. abelian unitary group Y C A = U" =
mell) | semi-duality holds with dual co-action &
of U on A® B(L>°(U)), Takesaki duality [3] for M,

(M XaqU) XU ~ M Q B(L®U)) ~ M,
and for A,

(A ® B(L®U))) xaU) xpU ~ A® B(L®U)),



can be decomposed into the following isomorphisms:
(i) M xqUd ~ AR B(L>®U))[: amplification pro-
cess|,

(i) (A® B(L>®(U)) x4 U ~ M][: reconstruction].

Isomorphism ii) = recovery of unknown micro-
algebra M of quantum observables via crossed prod-
uct (AQ B(L>®(U)) x4U from macroscopically vis-
ible MASA A and B(L°°(U))= CCR consisting of
U + measured data U coupled through U-action 4.
i)<=>ii): mutually equivalent by Takesaki duality
[3], and controlled by K-T operators V and W =
(F ® F) 1V (F ® F) generating the measurement
coupling ExV. For instrument J, we have

I(Alwe)(B):=(we @ my)(r(&)(B ® xa))
with B ® xpo € M XqU. Thus,
1st crssd prdct M x U = Micro-Macro composite
87

L T . inst tJ
system with U-action ~ (M X U) SrAmENt J pead-
s «

able data € Spec(A) C U of A
— 2nd crssd prdct (M xU) x U ~ M: Micro
o &

system recovered from Macro data U of A = bi-
directionality OK!



4 Reconstruction of Micro-Algebra

M & its Type-Classification

Recovery of M from dyn. sys. A® B(L°°(U)) A U
through (A ® B(L®(U))) x4 U ~ M

\U, ~

i) Data of dynamical system A ® B(L>°(U)) A U

\l/ ~

ii) modular data of (A ® B(L°°(U))) x5U

l

iii) structure of M ([7])

States (within a sector corresponding to M) «——
Spec(A)= classifying space of intrasectorial states
in harmony with our general strategy in Sec.2 in the
sense of intrasectorial analysis = [sector analysis of
coupled system].

i) Dynamical system N v\ G with N := A ®
(8%

B(L*(U)) and G = U and its central part: A fB\ G

with 3(NV) = A.



Proposition 3 For W*-crossed product Q = AxgG
of an abelian dynamical system A  G:

(i) action 3: free <= A: maximally abelian in Q:
A=9nA;

(ii) when (3 is free, Q is a factor <= 3 is ergodic.
In this case, 3(Q) = AP,

Central ergodicity of & is related with factoriality of
crossed product M = N x4 G-

For & free on the centre, the equalities hold

3(M) = 3(Q) = r(&) (3N ® 1),

and hence, the following conditions are equivalent:
(i) action & is ergodic on the centre;

(i) M =N x4 G: factor;
(i) @ = Axg G : factor.

i) Modular data of M = N x4 G-

</A/Zt£) (S) — Ago&s,qbg(SL
(J€) (5) = Uy(s)Jp&(s™1), €€ LA(G,9Hy),s € G,



A pon, 4 relative modular operator from n.f.s. weight

¢ of N to ¢ o &g

Connes cocycle derivative: V; = (D(¢odbs) : Do)y =

1t —1t
Aqu&S?qb © A(b

Dual weight $ of N’ x4 G is defined as such a n.f.s.
weight given for X € N by

3(X) = { P X =m@m©, e,

where ‘B is the set of left bounded vector (with left
action ;).

Modular autoAmorphism group a$ of dual weight g?ﬁ

is given by af(X) = ATXATM for X € N x4 G,
whose action on N x4 G can be specified by
cf(r(@)(X @ 1)) = r(@)(e(X)®1), X €N, tER,
o?(A(s)) = M(s)r(&)((Dp o s : DB); ®1), s € G.



iii) Structure of M =N x5 G

Theorem 4 M = N x4 G of centrally ergodic dy-
namical system (N v~ GG) has the same von Neu-
«

mann factor type as Q = 3(N) x4 G. Namely, the

following criteria hold:

(i) M is of type | <= dyn. sys. (3(N) o G)
(87

on the centre is isomorphic to the flow on L*°(G):

(BWN) £ G) = (L2(G) ~ G);

Adlg
(i) M is of type Il <= (3(N) v> G) is not isomor-
«
phic to (L*°(G) G) and 3(N) admits G-inv.

Adrg
measure with support 3(N);

(iii) M is of type lll <= 3(N') admits no &-inv.
measure with support 3(N).

“Feedback” necessary here!: in view of the above
1), our starting assumption [M AU with o = Ad:
adjoint action of U] was too restrictive to recover
M of non type | !

However, the assumption o« = Ad is simply due
to an oversimplification (common in measurement



theory) to neglect intrinsic dynamics of microsys-
tem M keeping only coupling terms between M
and apparatus A! So, if intrinsic dynamics of M
is retained, the above results allow us to recover a
generic Micro-Algebra M. l.e., we have such a flow
chart as [states — algebra — dynamics + classifying
space].

For M of type Ill: modular structure of M is com-
pletely determined by that of A

— modular spectrum S(M) depends on A and U:
namely, modular spectrum is given by

S(M) = ({Spec(Dgoa,¢) : & € Wa}
where W 4 is the set of all normal semi-finite faithful
weights on A and Ayoq., ¢ = [D(w 0 &y) @ Dw], Ay,

By Connes theory:

(1) M: typelllly, (0 <A < 1), <= S(M) = {\":
n € Z} U {0},

(2) M: type lllg <= S(M) = {0,1},

(3) M: type lll; <= S(M) =R,.
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