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1　Fluctuation Theorem in Classical Systems

・Experiment by　Wang, Sevick, Mittag, Evans, Searles (02)
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1　Fluctuation Theorem in Classical Systems

Langevin analysis of experiment by　Wang, Sevick, Mittag, Evans, Searles (02)

Experiment by Wang et al.
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・Mazonka,Jarzynski (99): FT
・Tasaki,Terasaki,Monnai (02), van Zon, Cohen (03)FT-prediction
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Example (detailed FT by Jarzynski):

・ equilibrium to different equilibrium
<Process>

1. A system is prepared to be in equilibrium.

2. Interaction V(t) is turned on at t=0 and is kept to be Vf after t=T.

<Probability Distribution for Forward　Process: Γ０→Γ１
Backward Process: Γ’０→Γ’１ >

Γ’：time reversal of Γ、γ(t,0)：sol. of eq. of motion、γ(t,0)：sol. for V(T-t) 
<Detailed FT>

1　Fluctuation Theorem in Classical Systems
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1　Fluctuation Theorem in Classical Systems

<Proof>
Forward evolution and Backward evolution:

where                                                           is work done externally

<Corr>
Jarzynski equality:       work measurement ⇒　free energy difference



1　Fluctuation Theorem in Classical Systems

valid even far from eq., includes (higher order) Onsager relations etc

Fluctuation Theorem

Prob(σ) : probability of observing an average entropy production rate/work
externally done σ during time interval τ

Classical Systems:
τ→∞：SSFT　（Evans-Cohen-Morriss, Gallavotti-Cohen）
Stocahstic systems (Spohn-Lebowitz,Kurchan)
Chemical reaction (Gaspard)
Finite τ：TFT　（Evans-Searles）、　Detailed FT　（Jarzynski）　　　etc

Quantum Systems：
Finite system, finiteτ （Kurchan）,  Generalization (Maes-Netocny)
C*-version (Matsui-ST)

Jarzynski equality
Classical systems (Jarzynski), Quantum systems (Yukawa)
Relation with Fluctuation Theorem (Crooks), 　Quantum version (Monnai)



2　Fluctuation Theorem in Quantum Systems

Prob(σ) : probability of observing an average entropy production rate/work
externally done σ during time interval τ

To measure entropy change or work done externally,

[A] Measure energy, particle numbers etc. twice and evaluate the entropy change 
or work done as the difference of the two observed values.

(Kurchan’s protocol)

[B] Measure flows of energy, particle numbers etc. and evaluate the entropy change 
or work done as accumulated values of the flows.

　　Classical Mechanically:  [A] = [B]

　　Quantum Mechanically: [A] ≠[B]　<- noncommutativity of observables



examples based on Kurchan’s view:

(a) equilibrium to different equilibrium (single system)
<Process>
1. A systems is prepared to be in equilibrium.
2. Interaction V(t) is turned on at t=0.
<‘Entropy’ measurement>
1. Measure energy, particle #, etc at t=0.
2. Measure energy, particle #, etc at t0.
<Probability Distribution for Forward Process>

Distribution of 

<Backward Process>
Evolution generated by the interaction V(t0-t)
Initially in  
PB(η): corresponding distribution of η for backward process

where

2　Fluctuation Theorem in Quantum Systems

If then



examples based on Kurchan’s view:

(b) nonequilibrium transient states
<Process>
1. Two independent systems are prepared to be in different equilibria.
2. Interaction V is turned on at t=0.
<‘Entropy’ measurement>
1. Measure energy, particle #, etc at t=0.
2. Measure energy, particle #, etc at t.
<Probability Distribution>

Distribution of 

2　Fluctuation Theorem in Quantum Systems

If then

⇔　∞-system version (Matsui, ST)



Finite SystemBath　Tk μk

3　Fluctuation Theorem in Infinite Quantum Systems

FT In Infinitely extended quantum systems

SETTING: infinitely extended systems coupled by a bdd interaction

QUESTIONS: what would be the quantum analog of TFT?

Bath　Tj μj



Theorem：Relative Entropy (Ojima et al.(88,89),Jaksic Pillet (01,02))

3　Fluctuation Theorem in Infinite Quantum Systems

NB1:Araki’s Relative Entropy： C*-extension of
S(ρ２｜ρ１)＝Tｒ｛ρ１（logρ１－logρ２）｝

NB2:NESS Entropy Production is independent of system division. 



3　Fluctuation Theorem in Infinite Quantum Systems

GNS representation and Relative modular operator

GNS representation
conventional view              GNS view (Hilbert space)

Density matrix

Observable
Left multiplication

Right multiplication

`Hilbert’ space vector

NB.  Similarity with Thermofield dynamics of Umezawa et al. (Ojima)

conventional view              GNS view (Hilbert space)

Relative modular (super)operator:

Density matrix

Observable

`Hilbert’ space vector

Non-tilde operator

Tilde operator



Theorem：Transient Fluctuation Theorem  (T.Matsui, ST 03)

3　Fluctuation Theorem in Infinite Quantum Systems

NB: Natural extension of Evans-Searles transient fluctuation Theorem
NB: Relative entropy is not a usual observable, but can acquire
meaning in connection with twice measurements.



4　Fluctuation Theorem and Measurements

Example with the effect of noncommutativity
⇔ Quantum version of Externally dragged Langevin equation

Fluctuating 
force

Initial position 
distribution

・Mazonka,Jarzynski (99): FT
・Tasaki,Terasaki,Monnai (02), van Zon,E.G.D. Cohen (03)

Analysis of experiment by　Wang, Sevick, Mittag, Evans, Searles (02)



4　Fluctuation Theorem and Measurements

Example with the effect of noncommutativity
⇔ Quantum version of Externally dragged Langevin equation (ST,Monnai)

Model:

Initial state



4　Fluctuation Theorem and Measurements

Example with the effect of noncommutativity
⇔ Quantum version of Externally dragged Langevin equation

quantity of interest = work externally done/temperature

[A] Twice measurement case
・Backward evolution is identical to the forward evolution.
・Fluctuation theorem holds:

・Distribution is not simple. Particularly, it is not Gaussian.
・In classical limit, it becomes Gaussian.

[B] Flow measurement case

・Distribution is Gaussian.
・Mean value and variance are Identical to those in case [A].
・It does not satisfy Fluctuation Theorem.
・In the classical limit, it agrees with that of case [A].



5　Summary

・ The distribution of entropy production or work externally done obeys a simple
symmetry relations. ⇔　Fluctuation Theorem (FT)

・ In Classical case, FT holds for a wide range of systems such as the stochastic
dynamics, Hamiltonian dynamics, etc.

・ In Quantum case, the measurement procedures do influence the final results.

⇒　Problem of selecting appropriate method is an open problem.

・　Entropy production and fluctuation theorem for infinite systems

Entropy production = time derivative of Araki’s relative entropy
Fluctuation theorem for this entropy production holds.
Modular operator ⇔ Observable via twice measurements


