量子ゲーム理論について

筒井 泉

高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 I. classical game theory

strategy of players, payoff, Nash equilibrium (NE), Prisoners Dilemma, Battle of the Sexes

II. quantum game theory

strategy in Hilbert space, entangled strategy, classical limit, quantum NE, phase structure

III. quantum vs classical

resolution of dilemmas? quantization schemes, roles of referee, further development I. classical game theory

m players try to optimize their payoffs by making their choices in n strategies properly

von Neumann - Morgenstein (1947)

for m = 2, n = 2 case

Prisoner's Dilemma

Pareto optimal

Nash equilibrium (NE)

NE is not the best choice (Pareto Optimal) for the two players

→ dilemma

Battle of the Sexes

two Nash equilibria

players cannot decide on the choice Opera/Football dilemma

Stag Hunt

Pareto optimal NE

risk dominant NE

players cannot decide on the choice Stag/Hare dilemma

general payoff table

payoff matrices

Alice:
$$A = \begin{pmatrix} a & e \\ c & g \end{pmatrix}$$
 Bob: $B = \begin{pmatrix} b & f \\ d & h \end{pmatrix}$

classical game theory is based on

- bit ('0' or '1') or their mixture (mixed strategies)
- payoffs are specified by matrices A_{ij} , B_{ij}

useful for analyzing decision making processes in economics, sociology,

what if the players can resort to qubit strategies?

Eisert-Wilkens-Lowenstein (1999), Meyer (1999) resolution of the Prisoner's Dilemma!

II. quantum game theory

strategic space : Hilbert space $\mathcal{H} = \mathcal{H}_A \times \mathcal{H}_B$

payoff: self-adjoint operators A and B

Alice's payoff $\Pi_A(\alpha,\beta;\gamma) = \langle \alpha,\beta;\gamma|A|\alpha,\beta;\gamma \rangle$ Bob's payoff $\Pi_B(\alpha,\beta;\gamma) = \langle \alpha,\beta;\gamma|B|\alpha,\beta;\gamma \rangle$

expectation values

quantum Nash equilibrium (QNE) $|\alpha^{\star}, \beta^{\star}\rangle$

 $\Pi_A(\alpha^\star,\beta^\star;\gamma) \ge \Pi_A(\alpha,\beta^\star;\gamma)$

 $\Pi_B(\alpha^\star,\beta^\star;\gamma) \ge \Pi_B(\alpha^\star,\beta;\gamma)$

each player cannot improve their payoff by deviating from the QNE unilaterally

2 player 2 strategy quantum games

 $\dim \mathcal{H}_A = \dim \mathcal{H}_B = n = 2$

strategy as qubit

 $|\alpha\rangle_A = \alpha_0 |0\rangle_A + \alpha_1 |1\rangle_A \qquad |\alpha_0|^2 + |\alpha_1|^2 = 1$ $|\beta\rangle_B = \beta_0 |0\rangle_B + \beta_1 |1\rangle_B \qquad |\beta_0|^2 + |\beta_1|^2 = 1$

probabilistic distribution and interference is now possible!

quantum correlation

$$J(\gamma) = e^{i\frac{\gamma_1}{2}S} e^{i\frac{\gamma_2}{2}T}$$

three convenient operations

	Swap	$S\left i,j\right\rangle = \left j,i\right\rangle$	$\left i,j\right\rangle = \left i\right\rangle_{A}\left j\right\rangle_{B}$	
	swap of strategies between two players	$egin{array}{llllllllllllllllllllllllllllllllllll$	$= \frac{ \beta, \alpha\rangle}{ \alpha\rangle_A \beta\rangle_B}$	
	Conversion	$C\left i,j\right\rangle = \left \bar{i},\bar{j}\right\rangle$	$\overline{i} = 1 - i, i = 0, 1$	
	conversion of strategies of each player	$\left \bar{\alpha}\right\rangle_{A} = \sum_{i} \alpha_{i} \left 1 - i\right\rangle_{A}$	$\left \bar{\beta} \right\rangle_{B} = \sum_{j} \beta_{j} \left 1 - j \right $	i) _B
	Twist	$T\left i,j\right\rangle = \left \bar{j},\bar{i}\right\rangle$		
	combination $T =$	= <u>SC</u>		
	alaahaa 🖉			

algebra
$$S^2 = C^2 = T^2 = I$$
 $S = CT$ and $C = TS$
 $[S,T] = ST - TS = 0$

classical limit

if [A, B] = 0 choose the basis so that

$$\langle i', j' | A | i, j \rangle = A_{ij} \delta_{i'i} \delta_{j'j}, \langle i', j' | B | i, j \rangle = B_{ij} \delta_{i'i} \delta_{j'j}.$$

then at $\gamma = 0$ (classical limit) we have

$$\begin{split} \Pi_A(\alpha,\beta;0) &= \langle \alpha,\beta;0|A|\alpha,\beta;0\rangle = \sum_{i,j} x_i A_{ij} y_j & \text{reproduce payoff under classical} \\ \Pi_B(\alpha,\beta;0) &= \langle \alpha,\beta;0|B|\alpha,\beta;0\rangle = \sum_{i,j} x_i B_{ij} y_j & \text{mixed strategies} \\ x_i &= |\alpha_i|^2 \text{ represents probability to choose } |i\rangle_A \end{split}$$

 $y_j = |\beta_j|^2$ represents probability to choose $|j\rangle_B$

classical game is contained in quantum game

symmetric games

• S-symmetric $\Pi_B(\beta, \alpha; \gamma) = \Pi_A(\alpha, \beta; \gamma)$

ensured if B = SAS. game is 'fair'

examples: Prisoner's Dilemma, Stag Hunt

• T-symmetric $\Pi_B(\bar{\beta},\bar{\alpha};\gamma) = \Pi_A(\alpha,\beta;\gamma)$

ensured if $B = T A T_{1}$

game is 'anti-fair'

example: Battle of the Sexes

correlated (effective) payoff operator

 $\mathcal{A}(\gamma) = J^{\dagger}(\gamma)AJ(\gamma) \implies \Pi_{A}(\alpha,\beta;\gamma) = \langle \alpha,\beta | \mathcal{A}(\gamma) | \alpha,\beta \rangle$

meanings of quantum correlation

quantum Nash equilibria

fedge' solutions
$$|lpha^{\star}, \beta^{\star}
angle = |0,0
angle, |1,1
angle, |0,1
angle, |1,0
angle$$

$ lpha^{\star},eta^{\star} angle$	$ 0,0\rangle$	$ 1,1\rangle$	0,1 angle	1,0 angle
Condition	$H_{+} > 0$	$H_{-} > 0$	$H_{+} < 0$	$H_{+} < 0$
			$H_{-} < 0$	$H_{-} < 0$
$Max(\Pi_A^{\star})$	A_{00}	A_{00}	A_{11}	$A_{01} + A_{10} - A_{11}$
$Max(\Pi_B^{\star})$	A_{00}	A_{00}	$A_{01} + A_{10} - A_{11}$	A_{11}

$$H_{\pm}(\gamma) = \tau(A) \pm \left[G'_{+}(\gamma) + G'_{-}(\gamma)\right]$$

$$\tau(A) = A_{00} - A_{01} - A_{10} + A_{11}$$

$$G'_{+}(\gamma) = (A_{00} - A_{11}) \cos \gamma_{2} \qquad G'_{-}(\gamma) = (A_{01} - A_{10}) \cos \gamma_{1}$$

quantum Prisoner's Dilemma

γ₁ 2 1 3 $A_{00} = 3, \quad A_{01} = 0$ 3 $\Pi^{\star}(\gamma_1,\gamma_2)$ $\dot{A}_{10} = 5$ $A_{11} = 1$ $|1, 0\rangle$ 2 γ_2 $(\gamma_1^{\star}, \gamma_2^{\star}) = (2 \arcsin \sqrt{\lambda}, 0)$ 1 maximal payoff point 4 0 3 $\lambda = (A_{11} - A_{01})/(A_{10} - A_{01})$ 2 but in another dilemma -10,1> (a) entropy of entanglement $\gamma = 0$ $(\gamma_1, \gamma_2) = (\pi/2, 0)$ $S(\rho_{\rm red}) = -\lambda \log \lambda - (1-\lambda) \log(1-\lambda)$ classical PD QNE by Eisert et.al.

'phase structure' of quantum PD

quantum PD

quantum BoS

best possible improvement (Alice and Bob have the same payoff at QNE) at maximally entangled strategy ... but the dilemma remains

'non-edge' solutions $|\alpha^{\star}, \beta^{\star}\rangle$

exist depending on correlation γ and payoff A, B

(modified) quantum PD

quantum SH

III. quantum vs classical

various different schemes

Eisert et.al. (1999) provides partial extension of CG

Marinatto-Weber (2000) provides partial deformation of CG

• resolution of dilemmas: scheme-dependent

• phase structure of QNE: (basically) scheme-independent

Schmidt scheme

provides full deformation of CG

$$\begin{split} |\Psi\rangle &= \sqrt{p} \, |\alpha\rangle_A |\beta\rangle_B + \sqrt{1-p} \, |\alpha'\rangle_A |\beta'\rangle_B, \\ &= U_A \otimes U_B \left(\cos\gamma \, |0,0\rangle + \sin\gamma \, |1,1\rangle\right) \\ &\quad J(\gamma) \, |0,0\rangle \end{split}$$

Schmidt decomposition

- γ entanglement parameter
 - analysis becomes extremely simple

Ichikawa's poster

implementation of quantum strategies

 $|\Psi\rangle = J(\delta) \cdot U_A(\alpha) \otimes U_B(\beta) \cdot J(\gamma) |\Psi_0\rangle \qquad |\Psi_0\rangle = |0\rangle_A |0\rangle_B$

Scheme	Correlation Op.	Players' Strategy	Merit	Demerit
EWL	$J(\delta) = J^{\dagger}(\gamma)$	restricted unitary op.	-extended family	-unnatural S
('99)	$J(\gamma) = e^{i\frac{\gamma}{2}D_2}$	$U_A, U_B \in \mathcal{S} \subset SU(2)$		-singular at $\gamma = \frac{\pi}{2}$
MW	$J(\delta) = I$	restricted mixed states	-clear entanglement	-small strategic space
('00)	$J(\gamma) = e^{i\frac{\gamma}{2}D_2}$	$(p,q)\in [0,1]\times [0,1]$		-deformed family
NT	$J(\delta) = I$	restricted mixed states	-clear/general entg.	-small strategic space
('04-a)	$J(\gamma) \in U(4)$	$(p,q)\in [0,1]\times [0,1]$		-deformed family
NT	$J(\delta) = e^{i\frac{\delta}{2}D_2}$	restricted unitary op.	-general: contains	-unnatural S
('04-b)	$J(\gamma) = e^{i\frac{\gamma}{2}D_2}$	$U_A, U_B \in \mathcal{S} \subset SU(2)$	EWL and MW	-deformed family
\mathbf{CT}	$J(\delta) = e^{i\frac{\delta_1}{2}S}e^{i\frac{\delta_2}{2}T}$	pure states	-full strategic space	-involved entanglement
('05)	$J(\gamma) = I$	$U_A, U_B \in SU(2)$		-deformed family
CIT	$J(\delta) = I$	pure states	-full strategic space	-deformed family
('06)	$J(\gamma) = e^{i\frac{\gamma_1}{2}X} e^{i\frac{\gamma_2}{2}D_2}$	$U_A, U_B \in SU(2)$	-clear/general entg.	

future directions

- firmer foundation: furnish a standard framework for QG based on some guiding principle (which is missing at present)
- generalization: study non-commutative case [A, B] ≠ 0, establish m-player, n-strategy QG, evolutionary QG theory (introduction of dynamics), ..., as done in CG
- explore quantum mechanics: interpret Bell (CHSH) inequality, Kochen-Specker, etc. in terms of QG
- application: find systems where QG may be relevant (quantum information/communication, molecular evolution of species?)