
The new BaBar Computing and
Analysis Model

Peter Elmer (Princeton University)
For the BaBar Computing Group

ACAT03
2 December, 2003

The BaBar Experiment

� BaBar is a colliding beam experiment whose primary
objectives include B-physics and the study of CP-violation.

� It studies (asymmetric) electron-positron collisions at the
Upsilon(4s) resonance using PEP-II at the Stanford Linear
Accelerator Center (SLAC)

� BaBar is an international collaboration involving ~80 institutes
in 10 countries

� We have been taking data since May, 1999. We are now several
months into “Run4”, which will last through summer, 2004.

Overview

� BaBar last formally wrote down a computing model (CM1) in
summer 2000

� During 2002, it became clear that many things had changed:

� Two additional years of experience

� BaBar had ever larger data samples and needed to support more
numerous and detailed analyses

� Distributed computing: 5 “Tier A” sites at end of 2002 (only 2 during
formulation of CM1)

� Continued use of two different eventstore technologies

� The development of a new data content (the “mini”)

� In addition, making analysis easier, more flexible and reducing
the time from “idea” to “result” is key to exploiting the very
large dataset we are accumulating.

Overview (2)

� BaBar thus revised its computing model in fall 2002
(Computing Model 2 or “ CM2”). The implementation of the
new model has taken place during 2003 and it is currently
being deployed.

� In this presentation I will discuss several key aspects of the
new computing and analysis model:

� The “ mini” and data content

� Eventstore

� Skimming and user/analysis-specific customization

� Data access

� Distributed computing

Mini

� BaBar originally planned for a hierarchical eventstore with the
possibility to “ drill down” , for sub-samples of events, to more detailed
(and hence typically larger) representations of the data:

� Tag, Aod, (Tru), Esd, Rec, (Sim), Raw

� In practice, several issues have prevented users from using more than
the Tag/Aod (usually called the “ micro”):

� Technical access problems with the eventstore

� Large size/event of data levels other than the micro

� Content not thought through in terms of actual use cases

� Users typically found themselves choosing between the “ micro” and
the original raw (a custom flat-file format outside of the eventstore)

� Driven initially in part by the needs of calibrations, a new and compact
“ mini” format was developed in 2001/2002 and stored in the Esd
component of the eventstore

Original data organization with new Mini

Micro

AOD

Tag

�BtaCandidates

� P4

� Quals

�Micro truth

�MC matching

�Tag bits

�Tag floats and ints

Mini

Esd

Tru

�Reco objects

� Tracks

� Fits

� Hits

� Emc clusters

�digis

�...

�PID information

�XxxPidInfo

�MC matching

�GTracks

�GVerticies

N
o

C
on

ne
ct

io
ns

, d
up

lic
at

ed
 d

at
a

� This new compact
format solved the
needs of
calibrations, but
still left a
fundamental gap
between the
“ micro” being
used by the
average analysis
user and the “ esd”

� As part of the CM2 implementation, we decided to
improve on the Micro implementation

2kB/event

8kB/event(original raw ~ 25kB/event)

New CM2 data organization

Micro

Aod

Tag

�Reco objects

� Tracks

� Fits

� Emc clusters

� digis

� ...

�PID information

� XxxPidInfo

�MC matching

�Tag bits

�Tag floats and ints

Mini

EsdTru

�Track hits

�Single-crystal clusters

�Dirc rings

� Dirc hits

�…

�GTracks

�GVerticies

Cnd

�BtaCandidates
•Reco-based
•composite

Usr

�Generic data
•event-based
•Candidate-based

� This change was happening in parallel to some of the
technology changes I'll describe in upcoming slides

Eventstore

� BaBar's primary eventstore (Bdb) has been based on a
commercial OO database technology (Objectivity). All data
and MC production wrote into Objectivity and analysis jobs
read from there (in particular at SLAC and CCIn2p3).

� The Bdb eventstore supported a hierarchy of data components
of (theoretically) increasing detail (tag, aod, esd, rec, raw).

� Early difficulties with the Objy eventstore led to the
development of an “ analysis-only” format (Kanga) in late
1999. This was based on ROOT I/O: a single TTree contains
the “ micro” (tag/aod) data. The Kanga data was produced by a
dedicated conversion application from the Bdb/Objy
eventstore. This data format was used at RAL and Karlsruhe,
and was the only data format used for analysis at universities.

Bdb/Objy eventstore problems

� Many, many, many scaling issues for both production and analysis.
(When you have 100's or 1000's of jobs the keyword is “ parallel” .)

� High maintenance costs (unacceptably high for small sites to use for
analysis)

� Data volume was larger than desired due to:

� Navigational overheads from the eventstore design, poor packing

� Lack of useful compression (until relatively recently)

� Difficulty to access and distribute the data

� Of particular difficulty was the transition to the use of “ multiple
federations” to deal with limited number of DBID's per Objy federation

� Concerns about relying on a proprietary technology from a small
company while HEP moves in another direction

� But we did produce physics results since 4 years using this technology!

Data Production with Bdb/Objy

Old analysis method

New CM2 Kanga/ROOT Eventstore

� Extended version of our Kanga/ROOT eventstore

� Multiple TTrees spread across several files, one tree per data
“ component” (tag, aod, esd,). New components (usr, cnd)
where users may add their own customized data.

� A simple event header knows where components for that
particular event are located (allows for sparse “ borrowing”
and “ pointer” collections). The TTree containing the event
headers defines the “ collection” .

� Do not require that a job access a central catalog to run

� In production the output of each job is separate from others
(simplifying parallelization, writing to local disk on farm
nodes, etc.). If necessary the data from multiple jobs is
merged in a subsequent process.

New CM2 “ Kanga” Eventstore

Interactive use of (new) Kanga

� In the original Kanga/ROOT implementation we used ROOT
I/O as a sort of database. (BaBar's event model has a
transient/persistent split.)

� It is not practical to use the original Kanga directly in
interactive ROOT, but only in the context of the full BaBar
Framework after the objects have been read in and converted
to fully transient objects.

� For some purposes, it was considerable desirable for CM2 to
allow “ interactive” access (i.e. at the ROOT CINT prompt or
in small standalone applictions) directly to the ROOT trees.

� This new Kanga version fully supports this interactive use,
which is ideal for both adminstrative needs and initial
exploratory analysis efforts.

Skim production

� Building on the new eventstore we decided to create a centralized “ skim”
production which would run frequently (nominally each 3 months)

� Each analysis group or user may define a “ skim” output for this
production in which they may chose to:

� Deep-copy micro or mini data

� Add their own customized data (e.g. composite candidate lists or
associate calculated quantities with either candidates or the event)

� In the past “ skimming” in BaBar has meant redoing (and adding new)
event selections and rewriting the tag bits only!

� There are currently o(100) skims defined, users “ opt-in” each round

� This is intended to replace the “ ntuple productions” that the analysis
groups were doing in the past, avoiding the pointless duplication of cpu
and I/O and (perhaps) incoherent access to data in mass storage. Output is
stored (and managed!) as eventstore data.

Skim production

� Deep copy only the micro, reference original esd:

� Deep copy the full mini:

New analysis model

Xrootd

� Bdb/Objy eventstore used AMS for daemon based file access
and as hook for dynamic file staging, load balancing, etc.

� We want the equivalent functionality for the new eventstore as
an alternative to NFS file access

� The existing rootd server serves files, but lacks many features
that we had with the AMS (or wish we had with the AMS)

� Want fault-tolerant, scalable, high performance file access

� Build on experience with AMS and reuse related code (e.g.
load balancer) when possible

�

BaBar has developed a new general replacement for rootd (and
TNetFile) with an extended feature set

Xrootd/XTNetFile features

� Multi-threaded daemon, normally one per data server

� Connection multiplexing

� Request redirection (e.g. for use in load-balancing, fault
tolerance)

� Request deferral

� Eventual asynchronous mode (including client pre-read)

� Unsolicited reverse request (server manages client)

� See web page: http://www.slac.stanford.edu/~abh/xrootd/

� Compatible with old rootd/TNetFile, plan to merge back into
ROOT distribution as a replacement for existing
rootd/TNetFile on the time scale of the ROOT2004 workshop
at SLAC (25-27 Feb., 2004)

Data access model with xrootd and
dynamic load balancer (dlb)

xrootd

dlbd

xrootd

dlbd

xrootd

dlbd

xrootd

dlbd

Client

subscribe

(any number)

(any number)

open

wait

open again

try host:port

who has the file?who has the file?

I doI do

Distributed Computing

� Having a single eventstore format simplifies things, with CM2
we no longer have such a “ balkanized” situation (Tier A's and
universities using different formats)

� BaBar now has 5 “ Tier A” sites (SLAC, CCIn2p3, Karlsruhe,
Padova, RAL) plus 20+ “ Tier C” university sites

� Significant step forward in the past months is that all new data
is processed off-site, in Padova, and output can be back at
SLAC with an average latency under 24 hours. Padova and
GridKa are also setting up to run production skims. (Previously
done entirely at SLAC.)

Distributed computing (2)

� Non-SLAC Tier A sites (Padova and Karlsruhe) will contribute
significantly to the skim productions

� RAL and In2p3 provide login access to collaborators for
analysis work and generate MC and will continue as such
(providing also transitional access to “ classic” Kanga and Objy
data)

� Tier C (University) sites will continue to produce MC, but the
new model will provide new opportunities and flexibility to
“ take a skim home” for analysis

� Expect evolution in resource utilization over time, but
flexibility of new model/eventstore should only improve our
ability to use resources (even those only available transiently).

CM2 Deployment Status

� Users updated/developed their skims in Aug/Sep2003

� PromptReco (data production) began production testing in
Jul2003 and began to write (new) data in the new Kanga
format from Sep2003

� Conversion (+ repair of data using mini and new calibrations!)
of existing tag/aod/esd data from Bdb/Objy began 1 month ago

� The first skim production has been ramping up over the past
month, should finish in Jan/Feb2003

� Simulation Production has been testing continously since very
early this year, will start production soon.

� We expect that the new computing and analysis model will
begin to make its impact on analysis from early this spring

Summary

� BaBar has reworked a number of pieces of its computing
model over the past year, including:

� a new eventstore, extending our original Kanga/ROOT eventstore in
a scalable way and providing for “ interactive” access

� new data content (the “ mini”) and a reworked “ micro”

� a new skim production (with customizable content) which runs very
frequently, allowing new and updated analyses to be introduced

� A new fault-tolerant and scalable means for data access (xrootd)

� Improved bookkeeping and a new Task Management system

� Continued emphasis on and improved use of distributed computing

� All of these things are expected to simplify and improve
analysis in BaBar as we move to ever larger data samples

Backup slides

Bookkeeping/Task Management (2)

� Ever larger datasets also means ever larger numbers of jobs
that a typical user needs to run as part of their analysis

� Basic tools were provided to help users determine which
collections they could run over and to submit the jobs, but
they were largely left on their own to determine whether the
jobs succeeded, resubmit any which failed, etc.

� As part of the new computing model, we also have developed
a new “ Task Management” system which:

� Will be more integrated with the dataset bookkeeping

� Take much of the burden off the user in managing so many jobs

� Generically apply a “ task” to a “ dataset”

� This is currently being tested to do our skim productions

Bookkeeping/Task Management

� BaBar uses a set of custom bookkeeping tools implemented
in perl and using a relational database

� Users can query the bookkeeping for lists of collections
meeting particular criteria (software release used, etc.), but
are left on their own to manage these lists. In addition
updates (adding, removing good/bad runs) are a bit ad-hoc.

� For historical reasons some information needed by users was
not in the central collection database, but in various
“ production” databases and hence users needed to look in
multiple places.

� In parallel to the other CM2 changes we decided to rework
the bookkeeping in order to introduce more explicitly the
concept of a dataset and to centralize the API's for accessing
various pieces of information.

