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Motivation, Part 1

This talk is motivated by the calculation of three loop structure
functions in DIS. This is a gigantic project that has already consumed
more than 20 manyears. In addition it has led to many new techniques
in the computation of loop integrals,

The main body of these calculations is the evaluation of all Mellin
moments of the DIS structure functions as a function of the moment
number N. To be able to do this one has to derive many formulas that
enable the systematic reduction of all integrals that can be encoun-
tered into either simpler integrals, integrals that can be done directly,
or integrals that can be computed from difference equations in which
the inhomogeneous term consists of simpler integrals. The main work
is the derivation of these equations. Of course, running the computer
programs that use these equations is a major job as well as there are
many years of CPU power involved. However, if the programs are suf-
ficiently generic, the running is mainly the organization of sufficient
amounts of computer power.

Another major part of the work is of course making sure that there
are no significant errors. This is a science by itself, but we will not
address that in this context.



The derivation of the necessary equations (O(1000) in the case of
this caleulation) is done by computer as well.

e For each topology one can write down a number of equations
based on integration by parts and other symmetry and invariance
principles,

o These equations then have to be combined to give useful equa-
Lions.

e The problem is they are parametric equations and one may have
to shift the values of these parameters to make useful combina-
tions.

¢ Then, some combinations possess nasty properties and don’t suf-
fice. The whole can only be done by guessing combinations and
developing insight.

The last consideration is similar to strategy games like chess or go.
For reasons that should become clear we will compare here with go.

The main motivation of this talk is to stimulate crossfertilization
between perturbative field theory and the writing of programs for
strategic games like go.



Motivation, Part 2

Before actually starting a calculation there are several considerations
to be made:

¢ With eurrent technology, when will | finish?

e What are the prospects of obtaining better methods?
e How fast can one obtain better methods?

& With these better methods. when will  finish?

[t should be clear that if the finishing date with current technology
is way after the need for the results one will be forced to look for
better methods. But it should be equally clear that looking for bet-
ter methods is so time consuming that it could push the ‘improved
finishing time’ way beyond the ‘current technology finishing time'. In
that case we should just start. An example of the latter is working
for one day to make a program run in 10 minutes that before would
run in 1 hour. That should be wasted effort, unless the program is
to be used many times. But we will not consider that case here.

The usual case is that initial improvements will bring the finishing
time closer but after a while one has reached the nearest finishing
time and further search for improvement will only make the finishing
time later. Unfortunately we do not know when this occurs. We have
to guess,
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An additional problem is that experimentalists need our results at
a given time. This suggests the optimal way to proceed: Once the
finishing time is well before when experimentalists need the results
and once obvious improvements are not forseeable, one group should
start the calculation, while other groups could possibly try to make
improvements. In this talk we will be addressing the plight of the
group that starts the caleulation, even though it may still be a bit
premature. One can always try to improve methods when the other
groups find extra technology.

Hence, the remark: “If you need thousands of hours of CPU time
and manyears of people time, you should try to be smarter” does not
hold. Tt is comparable to the remark: “If the answer to your integral
is one, there must be a simple way to get it”.



The derivation of reduction equations

The way the current calculations are done is by reduction equations:

e One writes down all equations that can be thought of for a given
system.

e One tries to combine these equations in such a way that step by
step parameters are either brought to a value that brings one to
a simpler case or brings the parameter to a standard value like 1
or (.

e In the end one has either only integrals that are of a simpler type,
or one has a master integral.

o In our case the master integral is then determined by a difference
equation. We have encountered even a fourth order equation.
This equation has in its inhomogeneous part only simpler inte-
grals. We have programs to automatically solve these difference
equations.



One might wonder: “what is no special about combining linear
equations”” The answer is that there are a few complications:

e These are parametric equations and at times one needs to shift
the parameters to find proper combinations. There are up to
12 4 1 variables.

e To find equations for the second variable one needs to substitute
the effects of the first reduction equation in all other equations.
After a few steps the remaining equations tend to become rather
lengthy. In our reductions we have many reduction identities
with thousands of terms.

¢ There is always the possibility of spurious poles. These are pow-
ers of 1 /e that could be avoided if one combines the equations in
a more careful manner. Sometimes they occur only for particular
values of the remaining parameters (including N).

e The resulting reduction scheme should be executable. With ex-
ecutable we mean: inside an available amount of CPU time and
inside available memaory.

Of course this last condition might make the whole thing impossible,
but let us assume for now that it means: reasonably close to a fastest
and most concise solution.



Let us have a look at an example. This concerns a subtopology of
the ladder topology. The diagram is:

|7 n8
k9
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An example of an equation that can be used to reduce ny (in ladder
notation) is

+LA27(17,-1+12,n1,n2,n3,n4,05,06,n7,08,0,0,-1+k8 ,k9) *(-k8)
+LA27(17,12,-1+n1,n2,n3,n4,n5,n6,n7,08,0,0,k8,-1+k9) *(k9)
+LA27(17,12,n1,~1+n2,n3,04,06,06 ,n7,1+n8,0,0,kB,k9) *(n8)
+LA27(17,12,n1,-1+n2,n3,n4,n5,n6,n7,n8,0,0,-1+k8,k9) * (kB)
+LA27(17,12,n1,-1+n2,n3,n4,n5,n6,n7,08,0,0,k8,-1+k9) *(-k9)
+LA27(17,12,n1,n2,-1+n3,14n4,n5,n6,n7,n8,0,0,k8 ,k9) »(-n4)
+LA27(17,12,n1,n2,-1+n3,n4,n5,06,n7,1+08,0,0,k8,k9) *(-n8)
+LA27(17,12,n1,n2,n3,1+n4,05,n6,n7,n8,0,0,k8,k9) *Q.Q*(nd)
+LA27(17,12,n1,n2,n3,n4,n5,n6,-1+n7,08,0,0,k8,-1+k9) *(-k9)
+LA27(17,12,n1,n2,n3,n4,n5,n6,n7,n8,0,0,k8, k)=
(4+k9+k8-n8-nd-2+n3-2*ep) ;

This equation is rather uncomplicated and is usually one of the hrst
to be used, It allows us to bring ny down to 1, sometimes at the cost
of raising some other parameters, We will rewrite it as



id Lh:?{l??pnﬂ_,lz?pnsq,nl?pun_,ni?,na?pua_,nd?{}l},nﬁ?.nﬁ?pnu‘
,n77pos_,nB7pos_,0,0,k87,k97?) = -1/Q.Q/(-1+nd)=(
+LA27(17,12,n1,n2,-1+n3,n4,n5,n6,n7,n8,0,0,k8,k9)*+(-(-14nd) )
+LA27(17,-1+12,n1,n2,n3,~-1+n4,05,06,n7,n8,0,0,-1+k8 ,k9) *(-k8)
+LA27(17,12,-14n1,n2,n3,-1+n4,n5,n6,07 ,08,0,0,k8,-1+k9) »(k9)
+LA27(17,12,n1,-1+n2,n3,-14n4,n5,n6 ,07,1+n8,0,0,k8,k9) *(n8)
+LA27(17,12,n1,-1+n2,n3,-1+n4 ,n5,06 ,07,08,0,0,-1+k8 ,k9) *(k8)
+LA27(17,12,n1,-1+n2,n3,-1+n4,05,06,n7,n8,0,0,k8,-1+k9) = (-k9)
+LA27(17,12,n1,n2,~1+n3,~1+n4 ,n5,n6,n7,1+n8,0,0,k8,k9) »(-n8)
+LA27(17,12,n1,n2,n3,~-1+n4,05,n6 ,-1+n7,n8,0,0,k8,-1+k9) =(-k9)
+LA27(17,12,n1,n2,n3,-1+n4,05,n6,n7,n8,0,0,k8,k9)»
(5-2+ep-2+*n3-n4-n8+k8+k9) ) ;



The next example is already nastier. We assume that in a similar
way we have brought ny down to 1. Next we look at ng for which
there are two possibilities:

+LA27(1+17,12,n1,n2,1,1,056,n6,-1+n7,n8,0,0,k8,k9) =(-17)
+LA27(17,12,14n1,~1+n2,1,1,05,n6,n7,n8,0,0,k8,k9)*(n1)
+LA27(17,12,1+n1,n2,1,1,05,n6,-1+n7,n8,0,0,kB,k9)*(-n1)
+LA27(17,12,n1,n2,1,1,~-14n5,1+n6,n7,n8,0,0,kB,k9)*(n6)
+LA27(17,12,n1,n2,1,1,n5,1+06,-1+n7,n8,0,0,k8 ,k9) *(-n6)
+LA27(17,12,n1,n2,1,1,05,n6,n7,08,0,0,k8,k9)*
(4+k9-2#n7-n6-n1-17-2%ep) ;

and

+LA27(1+17,-1+12,n1,n2,1,1,n5,n6,n7,0n8,0,0,k8, k9)*(17)
+LA27(1+17,12,-1+n1,n2,1,1,n5,n6,n7,n8,0,0,k8 k9)»(-17)
+LA27(17,12,-1+n1,n2,1,1,n5,14n6,07,n8,0,0,k8,k9) *(-n6)
+LA27(17,12,-1+n1,n2,1,1,n5,n6,1+n7,n8,0,0,k8,k9)*(-n7)
+LA27(17,12,n1,-14n2,1,1,n5,n6,14n7,n8,0,0,k8,k9) *(n7)
+LA27(17,12,n1,-1+n2,1,1,n5,n6,n7,n8,0,0,k8,-1+k9) = (-k9)
+LA27(17,12,n1,n2,0,1,n5,n6,n7,n8,0,0,k8,-1+k9) »(k9)
+LA27(17,12,n1,n2,1,1,n5,14+n6,n7,n8,0,0,k8,k9)*{.Q*(n6)
+LA27(17,12,n1,n2,1,1,n5,n6,n7,-1+n8,0,0,k8, -1+k9) = (-k9)
+LA27(17,12,n1,n2,1,1,n5,n6,n7,n8,0,0,k8,k9)
(4+k9-n7-n6-2#n1-17-2*ep) ;

Both present us with problems. The first equation may raise ng
from zero to one. This could lead us to a case of a spurious pole. The
reason is that integrals with all lines present we need to know only
to order 1 (and we will tabulate them only to that precision), while
integrals in which the five-line is missing might have a factor 1/¢ and
hence we would need the corresponding integral in which ns is one
again to order €).



The second equation does not have this problem but it may raise
n7. This can lead to extremely complicated integrals for which we
may not have enough computer resources. Hence the solution is to
use the first equation for the derivation of the next equations and
to implement both in the reduction equations. We will use the first
equation if the spurious pole doesn’t do any harm. Otherwise we will
have to resort to the second equation.

There is one equation that is relatively simple. It should be used

like a joker in the sense that one should keep it for the right moment.
Indiscriminate use at the wrong moment may complicate matters:

+LA27(1+17,12,n1,n2,n3,n4 ,n5,n6,-1+n7,n8,0,0,k8,k9)*(-17)

+LA27(17,1+12,n1,-1+n2,n3,n4,n5,n6,n7,n8,0,0,k8,k9)*(~-12)

+LA27(17,12,n1,n2,n3,n4,05,n6,n7,08,0,0,k8,k9)*
(~EB+17+12+N) ;

The presence of the factor N in the rhs causes a slight complication
if there are extra powers of P - Q.

id LA27(17?pos_,127{>1},n1?pos_,n27,1,1,n57,n6%pos_
,077pos_,n8%pos_,0,0,kB? k97)*P.Q"n? = P.Q"n/(-1+12)#(
+LA27(1417,-1+12,n1,14n2,1,1,n5,n6,~14n7,n8,0,0,k8,k9)*(-17)
+LA27(17,-1+12,n1,1+n2,1,1,n5,n6,n7,n8,0,0,k8,k9) =
(N-n-1+12+17-k8)) ;

Note that each power of P - @ lowers the effective value of N.

The final equation in the reduction of this case is a second order
difference equation that has 38 different simpler integrals in its inho-
mogeneous term.



The rules of go

| have selected go here as the game of choice because of a variety of
reasons:

e We are in Japan.
e [ am most familiar with it.

e The ‘standard’ brute force programming techniques don’t work
here, unlike chess.

Maybe not everybody is familiar with the rules of go, so here they
are in a nutshell:



® The board measures 19 by 19 intersections

o Black and white stones are placed by turn on an empty intersec-
tion.

e Each stone has a number of liberties equal to the number of
empty intersections adjacent to that stone.

e A stone that has all its adjacent intersections occupied by stones
of the opposite color is dead. It will be removed.

e Stones of the same color that are adjacent are connected. They
live and die together. They die if all combined liberties are taken.

e In the case that both white and black stones are simultaneously
without liberties, the stones of the color that did not move last
are removed.

e The score of a side is the sum of enemy stones killed and empty
intersections surrounded in such a way that any enemy stone
placed on such a point cannot avoid being killed eventually.

e The winner is the one with the greatest score.

e The game ends when neither side thinks that it can improve the
difference in the score by making a move.

e Repetition of a position with the same color at move is not al-
lowed. (Actually there are variations of this rule). It is called the
KO rule.






Dealing with go problems

We will have a look now at what tyvpe of thinking is involved in
playing go at a decent level. The first and most complicated example
18 from a game that was played in the not so recent past.



The following is a situation from a game of go. A rather famous
game and any very strong go player would recognize it for its next
move is one of the most famous in go history. The game was played
in 1846. White was Gennan Inseki and black the young upcoming

star Shusaku.

p P
-. {
O .
‘
»

~ N
L

-
r
O @

The reason why this game is interesting for us is the thinking behind
the next move, once one oversimplifies a bit. It solves 4 problems in
the various positions at the same time:

e It gives some support to the lower middle black group.
e [t restricts the white group on the middle right.

e It helps expanding the black influence at the top.

e [t prepares the invasion of the left.

Of course this is all backed up by a very accurate look ahead.



For us the styvle of thinking here is important: it is project oriented

thinking. Let us look at some simpler examples of this

Here we see four separate situations. Let us assume it is whites
move. The moves under consideration are indicated with crosses.
What do these moves do?



o Left-Top: It connects two groups that would not be separately
alive, but together they are.

o Left-Bottom: It kills the black group by preventing it from mak-
ing two eyes.

e Right-Top: It connects two groups, each with one eye, hence
making them into one group with two eyes. It prevents black
from connecting two groups, each with one eye. These groups
will die now.

e Right-Bottom: It prevents the black group from living. Now the
white groups can live because white can kill and remove the black
stones before black can kill one of the two white groups.

Notice that all was expressed in terms of abstract goals. And it
should be clear that the moves on the right are better than the moves
on the left. Counting will reveal that the move at the right top is
worth 72 points and the move at the right bottom 50 points.



Another simple example. The shicho or ladder
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We see here a problem in which black would like to capture white.,



e A: The white stone has two liberties. It is blacks move. He can
take one or the other,

e B: If black takes the one on top, white will move to the right and
has now three liberties.

e C: If black takes the one at the right, white will move to the top
and has again two liberties. This looks better.

e D: If next black moves at the right, white moves to the top and
has three liberties,

e E: If next black moves at the top, white moves to the right and
has still only two liberties.

e F: After many times the same we run into the edge and eventually
white will end up with only one liberty. In the next move black
can kill all at the cross.

Things can become more complicated when other white or black
stones are encountered. Because the encirclement is very fragile, one
must work out these ladders before they are started. Almost never
they are played.

But again this is a good example of project oriented thinking.
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Of course in reality things are more vague, but by the time the
endgame nears things become a little bit clearer. The abstractions
one has to think about in the opening are rather different from those
in the middle game, and those are different again from those in the
end game. But the principle remains the same:

e Look for problematic areas, or other objectives.

e Try to solve them to various degrees. One move may solve the
problem completely, while others may solve it partially.

o Make now a combination and see which move does the most work
and gets one closest to the final goal.

For the last evaluation one should consider one move as a move by
oneself followed by one of the opponent.

One does not go over the board to consider all possible moves.
This would be too exhaustive. It is like trving all different orders
of elimination of n variables, each of which can be treated with a
number of equations. When n is 12, this is big already, but at the
next order in perturbation theory we have already that n = 18,

The strength of a go player lies in his/her capabilities to define
projects, to solve them and to combine them. The strength of the
physicist lies in his/her capability to see the combinations of equations
that can be helpful.



Similarities

Now we can have a look at the similarities in the way of thinking.

e In both cases we have a well defined goal. Most points versus a
program that will do our calculation.

e There are gradations in the goal. Winning by more points versus
a faster program.

e At each step there are various ‘moves’.
e There are rules as to what are legal moves.
e Both have an underlying search tree.

e In both cases one tries to set a reasonable objective for the next
move; a project. If there is more than one project the move that
solves most (weighted) objectives will be preferred.

e One can define a ‘closeness’ to the objective.

e Even the advanced strategic concept of ‘aji’ in go has its equiv-
alent in what are the properties of the equations that are left
behind for the next step.

Conclusion: if one would have a go program that could play ac-
cording to project oriented reasoning, it should be possible to let its
strategy unit help to derive reduction programs in perturbative field
theory. And who knows what other fields of science.



The rules of Physics

So how would one do perturbative calculations with the above in
mind, and assuming we have the strategy unit mentioned above!

Seeing PFT as a game, one would have to define its rules and
objectives. And the initial state. The available mathematics should
provide most of the rules. But considerations like how deep in € one
has to expand would go into it as well. The quality of the resulting
code measures the size of the victory. There should be a ‘language’
for defining local objectives like: “I want to eliminate a given variable,
but at the same time [ don’t want to raise another variable”. Etc.



If one can do this, what would the future bring?
The work of a hypothetical future physicist:

6.

set the objective: determine what physics should be done (like
what caleulation).

. rules part 1: determine what mathematics might be involved. If

this does not exist vet, create it or have a mathematician create
it.

rules part 2: determine the physics boundary conditions. This is
related to the objectives of course.

determine the initial state. Derive the equations from which to
start.

maybe we need a measure for determining what the distance to
the objective is.

organize the computer facilities.

Of course, in the absence of conerete results, this is pure speculation.
But | do not see this as impossible! We will need more and more
Al in our research if we want to have more and more terms in the
perturbation expansions.



