KEK研究会 **『J-PARCの物理:ハドロン・原子核研究の新しい局面』**

高エネルギー加速器研究機構素粒子原子核研究所 2008年8月7日(木)

Formation of mesic nuclei by (π, N) reactions

Hideko Nagahiro (永廣 秀子) RCNP, Osaka Univ.

Contents :

• η -mesic nuclei formation with <u>p_n ~ 800 MeV/c</u>

- » in-medium properties of N*(1535)
- » level crossing phenomena

• ω -mesic nuclei formation with $\underline{p}_{\pi} \sim 1.8 \text{GeV/c}$

- » observation possibility of in-medium ω property
 - $-V_0 = -(159,29i) \text{ MeV}$: (attractive)
 - $-V_0 = -(100,50i) \text{ MeV}$: (attractive)
 - with N*(1520) resonance : (repulsive)

- H.N., D.Jido and S.Hirenzaki, NPA761(05)92
- H.N., D.Jido, S.Hirenzaki, PRC68(03)035205
- D.Jido, <u>H.N.</u> and S.Hirenzaki, PRC66(02)045202
- H.N., D.Jido, S.Hirenzaki, in preparation
- D.Jido, E.E.Kolomeitsev, H.N., S.Hirenzaki, Appears in NPA
- K.Itanashi, H.Fujioka, S.Hirenzaki, D.Jido, <u>H.N.</u>, Letter of Intent for J-PARC, July 2007

[Ref.]

- <u>H.N.</u>, D.Jido, S.Hirenzaki, NPA761 (05) 92
- M. Kaskulov, H.N., S. Hirenzaki, E. Oset, PRC75(07)064616

Missing mass spectroscopy

Candidate reactions : recoil-free production

- » (d,³He) reaction ...established method π atom formation (96, 98, 01) S.Hirenzaki, H.Toki, T.Yamazaki, PRC44(91)2472, ... K.Itahashi, *et al.*, PRC62(00)025202, ...
- » (γ,p) reaction ... smaller distortion effect
 M.Kohno, H.Tanabe PLB231(89)219
 E.Marco, W.Weise, PLB502(01)59 ... etc.
- » (π, N) reaction ... pion beam at J-PARC

Chrien *et al.*, PRL60(1988)2595 Liu, Haider, PRC34(1986)1845

meson production in recoil-free kinematics

<u>magic momentum in (π, N) reaction</u>

$$η$$
 meson ... p_π ~ 0.8 - 0.9 GeV/c
ω meson ... p_π ~ 2.5 GeV/c
p_π ~ 1.8 GeV/c → $m_ω$ – 80 MeV

η mesic nuclei formation

works for n mesic nuclei (n-nucleus systems)

- » (π^+,p) * Liu, Haider, PRC34(1986)1845 [theo]
 - * Chiang, Oset, and Liu, PRC44(1988)738 [theo]
 - * Chrien et al., PRL60(1988)2595 [exp]
 - * Kohno, Tanabe, PLB231(1989)219; NPA519(1990)755 [theo]
- » (d,³He) * Hayano, Hirenzaki, Gilltzer, EPJ.A6(1999)99 [theo]
 - * D. Jido, H.Nagahiro, S. Hirenzaki, PRC66(2002)045202 [theo]
 - * Exp. at GSI (Yamazaki, Hayano group) 2005-6 [exp]
- » (γ,p) * H.Nagahiro, D.Jido, S.Hirenzaki, NPA761(2005)92 [theo]

» η -³He system : PRL92(04)252001:TAPS@MAMI [exp] $\leftarrow \rightarrow$ "Comment" by Hanhart, PRL94(05)049101. etc... (ex. (γ , η) @ Tohoku, etc ...)

interests in n-mesic nuclei

» η -nucleon system : strongly couples to N*(1535) resonance

level crossing between η and N*-hole mode

in-medium n propagator (infinite matter)

$$D_{\eta}(\omega,k) = \frac{1}{\omega^2 - k^2 - m_{\eta}^2 - \Pi_{\eta}(\omega,k)}$$

N* dominance

Chiang, Oset, Liu PRC44(1991)738 Jido, Nagahiro, Hirenzaki, PRC66(2002)045202

 g_n

propagator (Green's function)

two branches

η meson branch and N*-h branch

T. Waas, W. Weise, NPA 625 (1997) 287. T.Inoue, E.Oset, NPA710(02)354

in-medium n propagator (infinite matter)

$$D_{\eta}(\omega,k) = \frac{1}{\omega^2 - k^2 - m_{\eta}^2 - \Pi_{\eta}(\omega,k)}$$

Jido, Kolomeitsev, Nagahiro, Hirenzaki e-Print: arXiv:0801.4834 [nucl-th]

level crossing between η and N*-hole mode

in-medium n propagator (infinite matter)

$$D_{\eta}(\omega,k) = \frac{1}{\omega^2 - k^2 - m_{\eta}^2 - \Pi_{\eta}(\omega,k)}$$

<u>N*-hole mass reduction (20%@ ρ_0)</u> $S_{\eta} = -\mathrm{Im}(D_{\eta}(\omega, k=0))$ 650 spectral functions 600 c ${\sf S}_\eta$ m_n [∑əw] ⊗ 500 MN**MN 1.0 0.8 650 450 0.6 600 level crossing 550 0.4 500 ^ω[MeV] ρ/ρ_0 400^L 450 0.2 0.2 0.4 0.8 1.0 1.2 0.6 400 ρ/ρ_0

- level repulsion yields ...
 - lower pole goes downward
 - → deeply bound η ?
- level mixing ...
 - strength of upper pole > that of lower pole

Jido, Kolomeitsev, Nagahiro, Hirenzaki e-Print: arXiv:0801.4834 [nucl-th]

KEK研究会[IJ-PARCの物理・ハドロン原子核研究の新しい局面], 2008年8月7日

What causes the level crossing ? : partial restoration of chiral symmetry

mass

 m_0

Chiral doublet model

DeTar, Kunihiro PRD39(89)2805 Jido, Nemoto, Oka, Hosaka NPA671(00)471 Jido, Oka, Hosaka PTP106(01)873 Kim, Jido, Oka NPA640(98)77

N* : Chiral partner of nucleon

mass difference of N* and N

$$m_N^*(\rho) - m_{N^*}^*(\rho) = (1 - C\frac{\rho}{\rho_0})(m_N - m_{N^*})$$

C ~ 0.2 : strength of chiral restoration at the saturation density ρ_0

reduction of mass difference in the nuclear medium

$\langle \sigma \rangle$

KEK研究会IN-PARCの物理・ハドロン原子核研究の新しい局面』、2008年8月7日

$$^{12}C(\pi^+,p)^{11}C_n$$
 reaction

momentum transfer : forward proton angle (0 degree)

elementary cross section

total cross section

KEK研究会们-PARCの物理・ハドロン原子核研究の新しい局面」、2008年8月7日

[Morimatsu, Yazaki NPA435(85)727, NPA483(88)493] (π+,p) spectra : ¹²C target : Green's function method

<u> $T_{\pi} = 650 \text{ MeV}$ (p_{π} = 777 MeV/c) : $\theta = 0 \text{ deg. (Lab)}$ </u>

deep b.s.

0s : (B.E., Γ) = (91.3, 26.3) [MeV]

K.Itanashi, H.Fujioka, S.Hirenzaki, D.Jido, H.Nagahiro, Letter of Intent for J-PARC 2007

KEK研究会们-PARCの物理・ハドロン原子核研究の新しい局面』、2008年8月7日

ω mesic nuclei formation

- ω meson properties in medium
 - » various models/approaches
 - > scaling rule
 - Brown and Rho, PRL66, 2720 (1991)
 - > QCD sum rule
 - Hatsuda and Lee, PRC46, 34 (1992).
 - > SU(3) chiral Lagrangian
 - Klingl, Kaiser and Weise, NPA624, 527 (1997)
 - Klingl, Waas, Weise, NPA650(99)299
 - Marco, Weise, PLB502(01)59
 - > couples to N*(1520)-hole
 - Lutz, Wolf, Friman, NPA706, 431 (2002)
 - » experimental works
 - invariant mass
 - p + A → ω + X at KEK E325 : (M.Naruki at al., PRL96(06)092301 etc.)
 - $\gamma + A \rightarrow \omega + X \rightarrow \pi^{0}\gamma + X'$ by ELSA-TAPS : (D.Trnka *et al.*, PRL94(05)192303)
 - > missing mass
 - (γ,p) reaction at SPring-8 LEPS (N.Muramatsu, LEPS group)
 - (π, N) reaction at J-PARC (K.Ozawa and R.S.Hayano, Lol for J-PARC, '07)

pion kinetic energy and elementary cross section

KEK研究会「N-PARCの物理・ハドロン原子核研究の新しい局面」、2008年8月7日

summary

- η -meson nucleus system
 - » in-medium properties of N*(1535) resonance
 - » chance of level crossing between ηN and N*
 - could be caused by partial restoration of chiral symmetry (Chiral doublet model)
 - » phenomena induced by the level crossing
 - > deeply bound η ? upper mode enhancement ?
- (π^+,p) reaction $(\sim(\pi^-,n))$... possible at J-PARC
 - » incident pion kinetic energy
 - > $T_{\pi} = 820 \text{ MeV} (p_{\pi} \sim 950 \text{ MeV/c})$: recoilless at η threshold
 - > $T_{\pi} = 650 \text{ MeV} (p_{\pi} \sim 777 \text{ MeV/c})$: recoilless at η threshold 50 MeV
- ω-meson nucleus system
 - » mass shift ? attractive ? repulsive ?
 - » experimental feasibilities at J-PARC ... case study
 - V₀ = -(156,29i) MeV ... ref.) Klingl et al., NPA624(97)527, NPA650(99)299
 - > $V_0 = -(100,50i)$ MeV ... large attraction and large absorption
 - > $V_0 = -(0,50i)$ MeV ... no attraction but large absorption
 - with N*(1520)-hole mode ... ref.) Lutz et al., NPA706(02)431
 - » signal ~ (signal of eta) / 10
 - » microscopic estimation ... future work