Isovector nucleon matrix elements with $N_f = 2 + 1$ dynamical DWF

Takeshi YAMAZAKI

Yukawa Institute for Theoretical Physics, Kyoto University

Y. Aoki, T. Blum, H-W. Lin, M. F. Lin, S. Ohta, S. Sasaki, R. J. Tweedie, and J. M. Zanotti

for RBC-UKQCD Collaborations

Refs. PoS(LAT2007):165(2007) and PRL100:171602(2008)

KEK workshop@ KEK August 8, 2008

Outline

- 1. Introduction
- 2. Simulation parameters
- 3. Results
 - g_A/g_V
 - Axial vector and induced pseudoscalar form factors
 - Vector and induced tensor form factors
 - Moments of structure functions
- 4. Summary

1. Introduction

Motivation :

understand nucleon physics from first principle (lattice) QCD

We calculate matrix elements related to isovector form factors and moments of structure functions of nucleon on $N_f = 2 + 1$ domain wall fermion (DWF) configuration

(generated by RBC-UKQCD collaborations on QCDOC)

Isovector form factors (elastic scattering $Ne \rightarrow Ne$)

• Vector and induced tensor form factors

(elastic proton-electron scattering)

$$\langle N, p | V_{\mu}(q) | N, p' \rangle = \overline{u}_{N}(p) \left(\gamma_{\mu} F_{1}(q^{2}) + i \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2M_{N}} \right) u_{N}(p')$$

$$q_{\nu} = p'_{\nu} - p_{\nu}$$

$$F_{1}(q^{2}), F_{2}(q^{2}) \rightarrow F_{1}(0) = F_{1}^{p}(0) - F_{1}^{n}(0) = 1$$

$$F_{2}(0) = \mu_{p} - \mu_{n} - 1 \ (\mu_{i} : \text{ magnetic moment})$$

$$\langle r_{1}^{2} \rangle, \langle r_{2}^{2} \rangle \text{ related to charge radii } \langle r_{p}^{2} \rangle, \langle r_{n}^{2} \rangle$$

 Axial vector and induced pseudoscalar form factors
 (β decay; muon capture on proton; neutrino-nucleon scattering; pion electroproduction)

$$\langle N, p | A_{\mu}(q) | N, p' \rangle = \overline{u}_{N}(p) \left(i \gamma_{5} \gamma_{\mu} G_{A}(q^{2}) + i \gamma_{5} q_{\mu} G_{P}(q^{2}) \right) u_{N}(p')$$

$$G_{A}(q^{2}), G_{P}(q^{2}) \rightarrow \quad G_{A}(0) : \text{ axial charge, } \langle r_{A}^{2} \rangle$$

$$g_{\pi NN} : \text{ pion-nucleon coupling}$$

$$g_{P} : \text{ pseudoscalar coupling for muon capture}$$

Structure functions (deep inelastic scattering
$$Ne \to Xe$$
)

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{Q^4} \left(\frac{E'}{ME}\right) l_{\mu\nu} W^{\mu\nu}, \quad W^{\mu\nu} = W^{\{\mu\nu\}} + W^{[\mu\nu]}$$

$$W^{\{\mu\nu\}} = \left(-g^{\mu\nu} + \frac{q^{\mu}g^{\nu}}{q^2}\right) F_1(x,Q^2) + \left(P^{\mu} - \frac{q \cdot P}{q^2}q^{\mu}\right) \left(P^{\nu} - \frac{q \cdot P}{q^2}q^{\nu}\right) \frac{F_2(x,Q^2)}{q \cdot P}$$

$$W^{[\mu\nu]} = i\epsilon^{\mu\nu\rho\sigma}q_{\rho} \left(\frac{S_{\sigma}}{q \cdot P} \left(g_1(x,Q^2) + g_2(x,Q^2)\right) - \frac{q \cdot SP_{\sigma}}{(q \cdot P)^2}g_2(x,Q^2)\right)$$

$$S^2 = -m_N^2, \ x = Q^2/2(q \cdot P)$$

Unpolarized structure function

 $F_1(x,Q^2)$ and $F_2(x,Q^2)$

Polarized structure function

 $g_1(x,Q^2)$ and $g_2(x,Q^2)$

Moments of structure functions (Operator Product Expansion)

$$2\int_{0}^{1} dx x^{n-1} F_{1}(x,Q^{2}) = \sum_{q=u,d} c_{1,n}^{q} (\mu^{2}/Q^{2},g(\mu)) \langle x^{n-1} \rangle_{q}(\mu) + O(1/Q^{2})$$

$$\int_{0}^{1} dx x^{n-2} F_{2}(x,Q^{2}) = \sum_{q=u,d} c_{2,n}^{q} (\mu^{2}/Q^{2},g(\mu)) \langle x^{n-1} \rangle_{q}(\mu) + O(1/Q^{2})$$

$$2\int_{0}^{1} dx x^{n} g_{1}(x,Q^{2}) = \sum_{q=u,d} e_{1,n}^{q} (\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu) + O(1/Q^{2})$$

$$2\int_{0}^{1} dx x^{n} g_{2}(x,Q^{2}) = \frac{n}{2(n+1)} \sum_{q=u,d} \left[e_{2,n}^{q} (\mu^{2}/Q^{2},g(\mu)) d_{n}^{q}(\mu) - 2e_{1,n}^{q} (\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu) \right] + O(1/Q^{2})$$

Wilson coefficients: $c_{i,n}^q, e_{i,n}^q$

Our calculations (Isovector):

 $\langle x \rangle_q(\mu), \ \langle x \rangle_{\Delta q}(\mu), \ d_1^q(\mu), \ (\langle 1 \rangle_{\delta q}(\mu))$

Operators of moments of structure functions $\langle P,S|O|P,S\rangle$

$$\langle x^{n-1} \rangle_{q} : \overline{q} \left[\left(\frac{i}{2} \right)^{n-1} \gamma_{\{\mu_{1}} \overleftarrow{D}_{\mu_{2}} \cdots \overleftarrow{D}_{\mu_{n}\}} - \operatorname{trace} \right] q \langle x^{n-1} \rangle_{\Delta q} : \overline{q} \left[\left(\frac{i}{2} \right)^{n-1} \gamma_{5} \gamma_{\{\mu_{1}} \overleftarrow{D}_{\mu_{2}} \cdots \overleftarrow{D}_{\mu_{n}\}} - \operatorname{trace} \right] q d_{n-1}^{q} : \overline{q} \left[\left(\frac{i}{2} \right)^{n-1} \gamma_{5} \gamma_{[\mu_{1}} \overleftarrow{D}_{\{\mu_{2}]} \cdots \overleftarrow{D}_{\mu_{n}\}} - \operatorname{trace} \right] q \langle x^{n} \rangle_{\delta q} : \overline{q} \left[\left(\frac{i}{2} \right)^{n} \gamma_{5} \sigma_{\rho\nu} \overleftarrow{D}_{\{\mu_{1}} \cdots \overrightarrow{D}_{\mu_{n}\}} - \operatorname{trace} \right] q$$

{}:symmetrize, []:antisymmetrize

Disconnected diagram : very noisy and expensive $\sim 10\times {\rm connected}$ one canceled in Isovector quantities when $m_u=m_d$

In this work only connected diagram \rightarrow Isovector quantity

$$R_{\vec{p}}^{\mathcal{PO}}(t, t_{snk}, t_{src}) = \frac{G_{\vec{p}}^{\mathcal{PO}}(t)}{G_{\vec{0}}^{G}(t_{snk})} \left[\frac{G_{\vec{p}}^{L}(t_{snk} - t + t_{src})G_{\vec{0}}^{G}(t)G_{\vec{0}}^{L}(t_{snk})}{G_{\vec{0}}^{L}(t_{snk} - t + t_{src})G_{\vec{p}}^{G}(t)G_{\vec{p}}^{L}(t_{snk})} \right]^{1/2} \\ \propto \langle N(0)|\mathcal{O}(q)|N(p)\rangle \quad (t_{src} \ll t \ll t_{snk})$$

Normalization of nucleon operator is canceled.

- $G_{\vec{p}}^{\mathcal{PO}}$: 3-point function of \mathcal{O} with \vec{p} and projector \mathcal{P} gauge invariant Gauss smearing source is employed. $G_{\vec{p}}^{G,L}$: 2-point function with \vec{p} and gauss smearing(G) or lo
 - : 2-point function with \vec{p} and gauss smearing(G) or local(L) sink gauss smearing source

(Isovector) Nucleon matrix elements

Recent works: Alexandrou et al PRD74:034508; PRD76:094511 ($N_f = 0, 2$ Wilson)

Göckeler *et al* PRD71:034508; PoS(LAT2007)161($N_f = 0, 2$ Wilson)

Hägler *et al* arXiv:0705.4295 ($N_f = 2 + 1$ Mixed action)

Sasaki and TY PRD78:014510 ($N_f = 0$ DWF)

Lin *et al* arXiv:0802.0863 ($N_f = 2 \text{ DWF}$)

	valence	sea	N_{f}	L[fm]	$m_{\pi} > [\text{GeV}]$
This work	DWF	DWF	2+1	2.7(1.8)	0.33
Alexandrou	Wilson		0	3.0	0.41
Alexandrou	Wilson	Wilson	2	1.9	0.38
Göckeler	Clover		0	1.7	0.55
Göckeler	Clover	Clover	2	2.0	0.30
Hägler	DWF	Imp. staggered	2+1	2.5(3.5)	0.35
Lin	DWF	DWF	2	1.9	0.49
Sasaki	DWF		0	3.6	0.39

DWF has good chiral symmetry on lattice. It is advantage to calculate nucleon matrix element, especially axial vector current.

Our calculation is carried out with $N_f = 2 + 1$ dynamical quark effect on relatively larger volume at lighter pion mass.

Finite volume effect at lighter pion mass

2. Simulation parameters

- $N_f = 2 + 1$ Iwasaki gauge + Domain Wall fermion actions
- $\beta = 2.13 \ a^{-1} = 1.73 \ \text{GeV} \ M_5 = 1.8 \ m_{\text{res}} \approx 0.003$
- Lattice size $24^3 \times 64 \times 16$ ($La \approx 2.7$ fm) $16^3 \times 32 \times 16$ ($La \approx 1.8$ fm) for g_A/g_V
- $m_s = 0.04$ fixed (close to m_s^{phys})
- quark masses $m_f = m_{sea} = m_{val}$ and confs.

m_{f}	m_{π} [MeV]	m_N [GeV]	# of confs.	N _{meas}
0.005	330	1.15	932	4
0.01	420	1.22	356	4
0.02	560	1.39	98	4
0.03	670	1.55	106	4

- We focus only on isovector quantities. (no disconnected diagram) $F_i(q^2) = F_i^p(q^2) F_i^n(q^2)$
- Four different non-zero $q^2 \approx 0.2, 0.4, 0.6, 0.75 [\text{GeV}^2]$
- Matrix elements are evaluated by ratio of 3- and 2-point functions.
- $t_{snk} t_{src} = 12 \approx 1.37$ fm

3. Results 3.1. Axial charge $g_A/g_V = G_A(0)/F_1(0)$

Heavier three data are almost independent of m_{π}^2 , while lightest data is 9% smaller than other masses. Smaller volume data are systematically below larger volume data. (1.8 fm) data are calculated on $16^3 \times 32 \times 16$ with heavier three quark masses

Similar behavior was seen in $N_f = 2$, but it sets in at heavier pion mass. We suspect that downward behavior is caused by finite volume effect. m_{π} dependence of $N_f = 2 + 1$ is similar to $N_f = 0$ on L < 2.4 fm, which is caused by finite volume.

In $N_f = 0$ such a dependence disappears when L > 2.4 fm. Large finite volume effect is not expected on 2.7 fm.

 $N_f = 2 + 1$ data on two volumes scale in $m_{\pi}L$.

Similar scaling is seen in two-flavor (Imp.) Wilson fermion calculations with various $m_{\pi} = 0.38 - 1.18$ GeV, $V = (0.95 - 2.0 \text{ fm})^3$, and β .

This observation is used for chiral extrapolation of g_A/g_V .

Chiral extrapolations of g_A/g_V

We did not use heavy baryon chiral perturbation theory(HBChPT) formula for chiral extrapolation.

Our m_{π} is beyond the region where HBChPT is valid even at two-loop order, $m_{\pi} < 300$ MeV. Bernard and Meißner PLB639:278 Most works employed HBChPT with Δ baryon for chiral extrapolation, but estimated finite volume effect is less than 1% at lightest point.

Chiral extrapolations of g_A/g_V (cont'd)

Second error is systematic determined from different choice of f_V , such as x^{-3} , $x^{1/2}e^{-x}$, and $m_{\pi}^2 e^{-x}/x^{1/2}$ with $x = m_{\pi}L$.

From fit with f_V , we estimate that one needs $L \approx 3.5-4.5$ fm ($m_{\pi}L \approx 6-8$) to aim finite volume effect being below 1% at $m_{\pi} = 330$ MeV.

3.2. Axial vector and induced pseudoscalar form factors

 m_f dependence of G_A is strange, and not monotonic function of m_f . Lightest data is larger than heavier mass data.

Lightest result of $\sqrt{\langle r_A^2 \rangle}$ is smaller than other mass points, and goes away from experiment. This m_π^2 dependence is similar to one in g_A/g_V

Axial charge rms radius $\sqrt{\langle r_A^2 \rangle}$

Similar trend is seen in $N_f = 2$ data on $(1.9 \text{ fm})^3$ volume, but the downward behavior sets in at heavier m_π as in g_A/g_V .

This would indicate large finite volume effect at lightest point.

$g_{\pi NN}$ coupling and g_P for muon capture

 $g_{\pi NN}$ is evaluated by definition of $g_{\pi NN}$ with $G_P(q^2)$. g_P is determined with assumption that $G_P(q^2)$ has pion-pole. Results at m_{π}^{phys} reasonably agree with experiments. Lightest data are smaller than linear fit line using heavier data.

 G_A and G_P are sensitive to finite volume.

3.3 Vector and induced tensor form factors

There is no strange, non-monotonic behavior in the form factors.

Dipole fit of form factors

 $F_2(0)$ cannot be calculated directly, so that $F_2(0)$ is a free parameter in $F_2(q^2)$ fit.

Dirac and Pauli rms radius $\sqrt{\langle r_1^2 \rangle}$, $\sqrt{\langle r_2^2 \rangle}$

Result increases as m_{π} decreases, but are smaller than experiments. Lightest results are consistent with linear extrapolations with other data. In HBChPT both radii diverge at chiral limit, while such a behavior is not seen.

Lighter quark mass calculation, *e.g.*, $m_{\pi} \ll 200$ MeV, would be necessary to observe divergent behavior.

Dirac and Pauli rms radius $\sqrt{\langle r_1^2 \rangle}$, $\sqrt{\langle r_2^2 \rangle}$

Linear m_{π}^2 dependences are consistent with previous results in quenched and dynamical calculations.

All the results do not have divergent behavior.

$$F_2(0) = \mu_p - \mu_n + 1$$

 $N_f = 0$ DWF PRD78:014510

 $F_2(0)$ has mild m_{π} dependence, and reasonably agrees with experiment in physical pion mass. m_{π} dependence is similar to previous results. Results obtained from $F_1(q^2)$ and $F_2(q^2)$ have no strange m_{π} dependence in contrast to $G_A(q^2)$ and $G_P(q^2)$. (less sensitive to finite volume effect)

3.4. Moments of structure functions

Renormalized at $\mu = 2$ GeV with non-perturbative method Tendency to approach experiment

Similar behavior in mixed action with perturbative renormalization Need finite volume study to confirm the curvature

Ratio of moments

 $N_f = 0$ DWF PRD73:094503

Renormalization factors are cancelled (due to good chiral symmetry). Almost flat, and consistent with experiment as in $N_f = 0$ DWF

Renormalized at $\mu = 2$ GeV with non-perturbative method in $\langle 1 \rangle_{\delta q}$ d_1 decreases as $m_{\pi} \rightarrow 0$. Finite volume effect in lightest point?

4. Summary

We calculated nucleon form factors and moments of structure functions with $N_f = 2 + 1$ dynamical domain wall fermions.

- Axial charge $g_A/g_V = G_A(0)/F_1(0)$
 - Large finite volume effect at $m_{\pi} = 330$ MeV on $(2.7 \text{ fm})^3$
 - g_A/g_V scaling in DWF and (Imp.) Wilson
 - $g_A/g_V = 1.20(6)(4)$ at physical pion mass
- Form factors
 - large finite volume effect in $G_A(q^2)$ and $G_P(q^2)$
 - less sensitive to finite volume in $F_1(q^2)$ and $F_2(q^2)$
- Moments of structure functions
 - $\langle x \rangle_q, \ \langle x \rangle_{\Delta q}, \ d_1^q, \ \langle 1 \rangle_{\delta q}$
 - Need finite volume effect study

Future work

- \circ Large volume and lighter pion mass
- \circ Finite volume study (difference $\langle N|V_{\mu}|N\rangle$ and $\langle N|A_{\mu}|N\rangle$)