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Introduction

- Our interest: dense matter EOS including Y
NS matter, SN

Dense matter EOS

Finite system and
nuclear matter
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Xty
Chiral symmetry

In hadron phase

- Chiral symmetry in hadron: N
m as Nambu-Goldstone boson

and its chiral partner, o
- Chiral potential in RMF model: o .
suggested from QCD (c.f. NJL m« s R
corresponding to chiral restoratic L
medium events[/10 MeV/c]
- w and p mass modification[12] " ®@°
0 Evidences of partial chiral symmetry — "°%°f[¥in 1o
restoration in nuclear medium? 800 | modificationy S
0 Theoretical model overestimates 600 P et
mass modification compared to [13] 400

where all of vector meson mass is gene ,q
condensate.
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[6] Naruki et al., PRL 96 (2006) 092301. [7] Brown and Rho, PR 363 (2002) 85; Hatsuda and Lee, PRC 46 (1992) R34.



Motivation

- Qur interest: dense matter EOS with Y

NS matter

D Dense matter EOS _ ]
Finite system and Field theoretical
nuclear matter model

RMF model with
chiral potential

explaining
Hyperon hypernuclear data Physical
potential Symmetry
N\, 2 and = hypernuclei Flavor symmetry,

(Hard to directly observe) Chiral symmetry

[1] Lattimer and Swesty, NPA 535 (1991) 331. [2] Shen et al., PTP 100 1013. [3] Yamamoto, Nishizaki and Takatsuka, NPA 691 (2001)
432c.



Model description
- RMF Lagrangian

Scalar mesons: Attractive

Vector mesons: Repulsive

part of baryon interaction part of baryon interaction
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* Long standing problems: Too early chiral restoration,
very stiff EOS, instability on chiral potential

What form should the meson potential have?

= Constrained by chiral symmetry, derived from SCL-LQCD




Chiral potential
derived from SCL

- Start point: Action of gluon and fermion on strong

coupling limit of Lattice QCD (g—>)atT =0
S=><+SF+m0)_(X

- After bosonizing fermion pair and integrating
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SCL3 RMF model
- Logarithmic SCL Chiral Potential

E/V (MeV/fm®)
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OProperty of chiral potential: Neither

instability nor abnormal vacuum

OConsistent with reproducing BE of
normal nuclei, S, of single A nuclei,

AB,, of ¢, \He and FP EOS

(K~210MeV softened by hidden
strange condensate (= ss
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Scalar and vector
potential in matter

1500

- Repulsive potential from w: & T c.=0
Good agreement with S 1000 | N A€~ 10
DBHF result by 3p, but E: RBHI _f// e
seems to be insufficient z >0 55557 Vector
from hi gher Py g 0 C,=200-and————

> 300
C,: Strength of w meson S s00| Ry, Sealar
potential and known as the £ e

suppresser of vector meson
field pg (fm™)

To reduce this strength, we would like to suggest

“Density dependent type coupling (cwN)”



Density dependent type

coupling

- May be derived from T
NLO calculation on SCL-LQCD 21000} Wi ™ _____________

- Scalar potential( « o)=saturate E <00 RB%gm
Vector potential ( x w) :
=increase linearly S "

- owN coupling: effective around ; =00 Sl__
P, and not important in high p, G 0‘,4_3 T

Here, we introduce ocwN coupling

and we examine its effect to the property
of sym. nuclear matter and NS matter




Interesting feature

* |s the ratio of hyperon fraction in NS changed by 2

hyperon potential?
« Determined by SU(3) symmety and the atomic

shifts(AS) of 2 -
* Repulsive but weak vector-isovector meson

coupling: 2 hyperon may appear on NS
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il
Aim of this study

* |s SCL3 RMF model be able to support
maximum mass of neutron star?

— Can density dependent type coupling resolve
this problem?

* On another RMF model, is the ratio of hyperon
fraction in NS also changed by 2 hyperon
potential determined by the atomic shifts(AS) of
27



Result(1)

- 2 hyperon potential: 500 |
determined by the atomic
shifts(AS) of 2-

- 2" appear at lower p, than

/\ — contradict to other calc.”
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where AS are not reproduced.
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p;/ Pp)

Particle fraction(Y;

Result(2)

- To confirm this situation, we also use the
phenomenological RMF model with non-linear

potential(TM1)
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- We can find the same situation occurred in this
calculation and 2 can appear in NS matter even
if it has a repulsive potential



——
Results(3)

Maximum mass of Neutron Star

Neutron Star EOS with Hyperon effect:
—Inclusion of Hyperon make NS EOS softened at
high density phase
Recent observation
may confirm heavier 2|
maximum mass of 1.5 |
neutron star, 1./M,

New SCL3 DDC RMF
model seems not to
be enough to explain
this observation.
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- RMF model with chiral SU(3) potential (SCL3)
o Saturation property, incompressibility, BE, S,, and AB,,
are well reproduced in appropriate parameter range.
0 Calculated NS matter EOS underestimates observed NS mass.

- Key for the property in high p; phase: C_
0 Density dependent type coupling (cwN type coupling)
=This needs not too large C_ to reproduce nuclear property.
Calculated results seems not to support 1.7 M if hyperon effects are
taken into account properly.
- Ordering of hyperon appearance
0 Atomic shifts of 2 ~: one of key ingredients of this topic
0 Ordering may be changed but that does not affect the final result so
much so far.
- In future------
O Finite temperature EOS for supernovae simulation



Thank you for listening!!
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