中性子星における Σハイペロン混合の効果について

Kohsuke Tsubakihara Department of Cosmophysics, Hokkaido University Akira Ohnishi YITP, Kyoto University

Introduction

Our interest: dense matter EOS including Y

NS matter, SN

[1] Lattimer and Swesty, NPA 535 (1991) 331. [2] Shen et al., PTP 100 1013. [3] Yamamoto, Nishizaki and Takatsuka, NPA 691 (2001) 432c.
[4] Schaffner and Mishustin PRC 53 (1996) 1416. [5] Schaffner-Bielich, NPA 804 (2008) 309..

Chiral symmetry in hadron phase

- Chiral symmetry in hadron: π as Nambu-Goldstone boson and its chiral partner, σ
- Chiral potential in RMF model: suggested from QCD (c.f. NJL model) corresponding to chiral restoration medium
- ω and ρ mass modification[12]
 - Evidences of partial chiral symmetry restoration in nuclear medium?
 - Theoretical model overestimates mass modification compared to [13] where all of vector meson mass is gene condensate.

Motivation

Our interest: dense matter EOS with Y

[1] Lattimer and Swesty, NPA 535 (1991) 331. [2] Shen et al., PTP 100 1013. [3] Yamamoto, Nishizaki and Takatsuka, NPA 691 (2001) 432c.

Model description

RMF Lagrangian

 Long standing problems: Too early chiral restoration, very stiff EOS, instability on chiral potential

What form should the meson potential have? \Rightarrow Constrained by chiral symmetry, derived from SCL-LQCD

Chiral potential derived from SCL

- Start point: Action of gluon and fermion on strong coupling limit of Lattice QCD ($g \rightarrow \infty$) at T = 0 $S = \sum_{R} + S_{F} + m_{O} \overline{\chi} \chi$
- After bosonizing fermion pair and integrating fermion $U = -\frac{a}{2} \log(\sigma) + b\sigma^2 \rightarrow -\frac{a}{2} \log(\det MM^{\dagger}) + b \operatorname{tr}(MM^{\dagger})$

 $SU_{f}(2) \operatorname{case}_{U=-\frac{a}{2}\log(\det MM^{\dagger}) + b\operatorname{tr}(MM^{\dagger}) - c_{\sigma}\sigma} = -\frac{a}{2}\log(\det MM^{\dagger}) + b\operatorname{tr}(MM^{\dagger}) - c_{\sigma}\sigma - c_{\zeta}\zeta} SU_{f}(3) \operatorname{case}_{+o(\det M+\det M^{\dagger})} = -a\left[\log(f_{\pi} + \phi_{\pi}) - \phi_{\tau} + \frac{1}{2}\left(\frac{\phi_{\pi}}{f_{\pi}}\right)^{2}\right] + \frac{1}{2}m_{\sigma'}\phi_{\sigma'} + \frac{1}{2}m_{\pi'}\pi^{2} = -\frac{a}{2}\left[\log(f_{\pi} + \phi_{\pi}) - \left(\frac{\phi_{\pi}}{f_{\pi}}\right) + \frac{1}{2}\left(\frac{\phi_{\pi}}{f_{\pi}}\right)^{2}\right] + \frac{1}{2}m_{\sigma'}\phi_{\sigma'} + \frac{1}{2}m_{\pi'}\pi^{2} = -\frac{a}{2}\left[\log(f_{\zeta} + \phi_{\zeta}) - \phi_{\zeta} + \frac{1}{2}\left(\frac{\phi_{\zeta}}{f_{\zeta}}\right)^{2}\right] + \frac{1}{2}m_{\zeta'}\phi_{\zeta'} + \frac{1}{2}m_{\kappa'}\kappa^{2} + \frac{1}{2}m_{\zeta'}\phi_{\zeta'} + \frac{1}{2}m_{\kappa'}\kappa^{2} + \frac{1}{2}m_{\zeta'}\phi_{\zeta'}\phi_{\zeta'} + \frac{1}{2}m_{\zeta'}\phi_{\zeta'}\phi_{\zeta'} + \frac{1}{2}m_{\zeta'}\phi_{\zeta'}\phi_{\zeta'} + \frac{1}{2}m_{\kappa'}\kappa^{2} + \frac{1}{2}m_{\zeta'}\phi_{\zeta'}\phi_{\zeta'} + \frac{1}{2}$

[8] Kawamoto and Smit, NPB 190 (1981) 100. [9] Kawamoto, Miura, Ohnishi and Ohnuma PRD **75** (2007) 014502.

SCL3 RMF model

 Logarithmic SCL Chiral Potential OProperty of chiral potential: Neither instability nor abnormal vacuum OConsistent with reproducing *BE* of normal nuclei, S_{Λ} of single Λ nuclei, $\Delta B_{\Lambda\Lambda}$ of ${}^{6}_{\Lambda\Lambda}$ He and FP EOS $(K \sim 210 MeV \text{ softened by hidden})$ strange condensate $\zeta = \overline{ss}$ Calculated NS mass underlies the most

□ Calculated NS mass underlies the most reliable observation, 1.44 M_☉ when we include hyperon degrees of freedom

What are key ingredients which are efficient to refine ?

[10] KT, Maekawa, Matsumiya and Ohnishi, arXiv:0909.5058

Scalar and vector potential in matter

- Repulsive potential from ω : Good agreement with DBHF result by $3\rho_0$ but seems to be insufficient from higher ρ_B
- C_ω: Strength of ω meson potential and known as the suppresser of vector meson field

To reduce this strength, we would like to suggest "Density dependent type coupling ($\sigma\omega N$)"

Density dependent type coupling

- May be derived from NLO calculation on SCL-LQCD
- Scalar potential(∝ σ)⇒saturate
 Vector potential (∝ ω)
 ⇒increase linearly
- $\sigma\omega N$ coupling: effective around ρ_{0} and not important in high ρ_{B}

Here, we introduce $\sigma\omega N$ coupling $g_{\omega} = g_{\omega 0} + g_{\sigma\omega N} \phi_{\sigma}$ and we examine its effect to the property of sym. nuclear matter and NS matter

Interesting feature

- Is the ratio of hyperon fraction in NS changed by $\boldsymbol{\Sigma}$ hyperon potential?
 - Determined by $SU_{\rm f}(3)$ symmety and the atomic shifts(AS) of Σ^-
 - Repulsive but weak vector-isovector meson coupling: Σ hyperon may appear on NS

Aim of this study

- Is SCL3 RMF model be able to support maximum mass of neutron star?
 - Can density dependent type coupling resolve this problem?
- On another RMF model, is the ratio of hyperon fraction in NS also changed by Σ hyperon potential determined by the atomic shifts(AS) of Σ⁻?

Result(1)

- Σ hyperon potential: determined by the atomic shifts(AS) of Σ⁻
- Σ^{-} appear at lower ρ_{B} than $\frac{3}{4}$
 - $\Lambda \rightarrow \text{contradict to other calc.}^{10}$

where AS are not reproduced.

Result(2)

 To confirm this situation, we also use the phenomenological RMF model with non-linear potential(TM1)

- We can find the same situation occurred in this calculation and Σ can appear in NS matter even if it has a repulsive potential

Results(3)

Maximum mass of Neutron Star

Neutron Star EOS with Hyperon effect: →Inclusion of Hyperon make NS EOS softened at high density phase 2.5 **Recent observation** NS mass 2 may confirm heavier M/M_{sun} maximum mass of 1.5 neutron star, $1.7 M_{\odot}$ 1 New SCL3 DDC RMF 0.5 model seems not to 0 be enough to explain 0.5 0 1.5 this observation.

2

Summary

- RMF model with chiral SU(3) potential (SCL3)
 - Saturation property, incompressibility, BE, S_Λ, and ΔB_{ΛΛ} are well reproduced in appropriate parameter range.
 Calculated NS matter EOS underestimates observed NS mass.
- Key for the property in high $\rho_{\scriptscriptstyle B}$ phase: $C_{_{\!\omega}}$
 - □ Density dependent type coupling ($\sigma\omega$ N type coupling) ⇒This needs not too large C_w to reproduce nuclear property. Calculated results seems not to support 1.7 M_☉ if hyperon effects are taken into account properly.
- Ordering of hyperon appearance
 - $\hfill\square$ Atomic shifts of Σ^- : one of key ingredients of this topic
 - Ordering may be changed but that does not affect the final result so much so far.
- In future ······
 - Finite temperature EOS for supernovae simulation

Thank you for listening!!