Baryon-Baryon Potentials with QCD-based Cores

QCDから導かれた短距離コアをもつバリオン間ポテンシャル模型

新村昌治(岐阜大工)

バリオン間(BB)相互作用の研究

ハイパー核、ストレンジ核物理学の進歩によって進展 ハイパー核、ダブルハイパー核の豊富な知識 YN,YY相互作用についての知識 J-PARC

理論的研究

OBEPなどの中間子交換モデル クオークモデル+中間子交換モデル カイラル摂動論によるモデル QCDによる理論計算 中、長距離パート短、中、長距離パート

短距離パート

短距離パート(第3領域)の性質がQCDにもとづく理論計算で解明されつつある

- * 従来の中間子交換モデルでは、短距離パートを現象論的に 導入してきた。
- * クオークモデルによる計算

整合性はどうなっているか? QCDによる短距離相互作用と中間子交換モデルは両立可能か? もし可能であれば、どういう性質をあたえるか?(とくにYN、YY相互作用について)

ハドロン交換機構によるハドロン間ポテンシャル

共通の土台: Hadron Exchange Mechanism with SU(3)symmetric Coupling Constants

		NN	YN,YY	$\pi N, KN$	$K^{\text{bar}}N$	$\pi\pi,\pi K,N^{bar}N$
Julich	OHEP, Form Factor, No Phenomenological Core	0	0	0	Δ	Δ
Nijmegen	OHEP, TMEP, Pomeron(Quark-Gluon Effects) Form factor	0	0	0		
fgA,fgB (2000)	OBEP with short-range cutoff Phenomenological Core	0	0			
GSOBEP (2005)	OHEP+Source Function No Phenomenological Core	0	0	O (2	^	

fgA,fgB(PTP Vol.104, 995,2000):

Scalar meson masses are different between the models SRC + OBEP with cutoff(at r=0.4fm)

$$V = V_{core}(r) + [1-exp(-(r/r_c)^2]^4 V_{OBEP} r_c = 0.4fm$$

$$V_{core}(r) = V_c \exp(-(r/r_g)^2)$$
 $r_g = 0.5(0.49147)$ fm for fgA(fgB)

List of the values of V_c

fgA	{27}	{10*}	{10}	{8a}	{8s}	{1}
Even	2768	2277	40	1162	3579	173
Odd	28	178	267	2219	1072	-
fgB	{27}	{10*}	{10}	{8a}	{8s}	{1}
Even	2822	2473	75	41	256	230
Odd	5	3112	96	3962	3603	-

V(r) [MeV]

500

-1000

-1500

V(r) [MeV]

r [fm] 10000 100 2000 2000 $m_{\pi} = 1014 \text{ MeV}$ *m*_π=835 MeV ---× $m_{\pi} = 835 \,\text{MeV}$ 7500 50 1500 1500 V(r) [MeV] 2500 1000 1000 500 500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

pion mass = 1014 MeV red pion mass = 835 MeV green

Date: 2010/12/2-4

Relative Strengths:

Fig. 2. The six independent BB potentials for S-wave in the flavor SU(3) limit, extracted from the lattice QCD simulation at $m_{\pi}=1014$ MeV (red bars) and $m_{\pi}=835$ MeV (green crosses).

NNはたいへんよい一致! 定性的にはfgAが相性がよい

fgAの「改良版」

Relative Strengths of Short Range Cores:

	{27}	{10*}	{10}	{8a}	{8s}	{1}	
LQCD	1	0.8	1.1	0.2	4.1	-0.6	
fgA	1	8.0	0.01	0.4	1.3	0.06	
fgA'	1	8.0	1.1	0.2	3.0	-0.6	Only c.c. are opitimized
fgA"	1	8.0	1.1	0.2	3.0	-0.6	Fully optimized
•		NN		YN		YY	- -

Coupling Constants:

	g(1)	g(8)	α	θ
scalar mesons	5.37138	0.76202	3.21258	-5.61
ps-mesons	0.14853	0.26600	0.49061	-23.92
vector mesons ge	3.44302	0.68648	1.00000	36.44
gm	4.72583	6.12176	0.43590	36.44

Blue numbers are fixed

Optimized parameters $11=10+1(Vc(\{27\}))$ in fgA' $16=10+1(Vc(\{27\}))+5(Vc(Odd))$ in fgA"

{10},{8s}{1}に大きな変化

NN : 影響なし

AN: 影響小さい

1S0:{8s}のみで統計的重みは小さい(10%)

ΣN: 影響大きい

I=3/2 3S1 {10}100% I=1/2 1S0{8s} 90%

AA、EN:影響大きい

I=0 1S0 {1}{8s}: I=1 1S0{8s}: I=1 3S1{10}:

現象論的な知識=拘束条件の量と質に符合!!

Date: 2010/12/2-4

Coupling Constants:

fgA	g(1)	g(8)	α	θ
scalar mesons	5.37138	0.76202	3.21258	-5.61
ps-mesons	0.14853	0.26600	0.49061	-23.92
vector mesons ge	3.44302	0.68648	1.00000	36.44
gm	4.72583	6.12176	0.43590	36.44

Blue numbers are fixed

fgA'	g(1)	g(8)	α	θ
scalar mesons	5.41223	1.14430	2.12067	-6.39
ps-mesons	0.13503	0.26600	0.49061	-23.92
vector mesons ge	3.40179	0.68655	1.00000	36.44
gm	5.45281	6.02445	0.35211	36.44
fgA"	g(1)	g(8)	α	θ
scalar mesons	5.35849	1.12632	2.08724	-4.93
ps-mesons	0.13990	0.26600	0.49061	-23.92
vector mesons ge	3.49537	0.70097	1.00000	36.44
gm	5.41256	6.17634	0.34902	36.44

Σ^+ p- Σ^+ p Elastic Cross sections

fgA,fgB: good

fgA', fgA": overestimation

3S1 {10} 100% $0.01 \rightarrow 1.1$

Σ -p- Σ -p Elastic Cross sections

fgA,fgB: underestimation

fgA',fgA": improved

1S0 {8s} 60% $1.3 \rightarrow 3.0$

Σ-p-Λn Reaction Cross sections

fgA,fgB,fgA'.fgA": good

Σ -p- Σ ⁰n Reaction Cross sections

fgA'.fgA": overestimation?

fgA.fgB: good?

Σ⁻p Inelastic Capture Ratio:

$$r = \sigma(\Sigma^{-}p \to \Sigma^{0}n)/[\sigma(\Sigma^{-}p \to \Sigma^{0}n) + \sigma(\Sigma^{-}p \to \Lambda n)]$$
$$r_{av} = (1/4)r(\text{singlet}) + (3/4)r(\text{triplet})$$

Fig. 3. BB potentials in baryon basis for S=-2, I=0, 1S_0 sector. Three diagonal(off-diagonal) potentials are shown in left(right) panel. Phase of off-diagonal ones in the right panel are arranged in zoom-out plot. Their true signs are shown in the insertion.

ΛΛ-ΛΛ(1S0)
weak attraction

HAL-QCD calc. by T, Inoue et al.

weak attraction

 Σ^{+} p(3S1) Strong repulsion

HAL-QCD calc. by T, Inoue et al.

weak attraction

 Σ^+ p(1S0) attraction

HAL-QCD calc. by T, Inoue et al. strong repulsion

Ξ⁻n(1S0)
strong repulsion

Ξ⁻n(3S1)
weak attraction

まとめ

○OBEP with cutoff+現象論的短距離力という枠組みは、実験データが整備される 条件の下で、QCDと整合性をもつように思える。

```
NN data \rightarrow Vc(\{27\}) : Vc(\{10^*\}) = 1 : 0.8
YN, YY data \rightarrow Vc(\{10\}), Vc(\{8a\}), Vc(\{8s\}), Vc(\{1\}) ???
```

QCD {27}:{10*}:{10}:{8a}:{8s}:{1}=1:0.8:1.1:0.2:4.0:-0.6

- ○QCDの短距離コア+OBEPというモデルは構築可能であると思われる YN、YY相互作用の予言を行うことも可能
- ○Hadron間相互作用への拡張 NN,YN,YY, πN,KN,K^{bar}N, ππ, N^{bar}N,πK