Baryon-Baryon Potentials with QCD-based Cores

QCDから導かれた短距離コアをもつバリオン間ポテンシャル模型

新村昌治(岐阜大工)

バリオン間(BB)相互作用の研究

ハイパー核、ストレンジ核物理学の進歩によって進展 ハイパー核、ダブルハイパー核の豊富な知識 YN,YY相互作用についての知識 J-PARC 理論的研究 OBEPなどの中間子交換モデル 中、長距離パート クオークモデル+中間子交換モデル 短、中、長距離パート カイラル摂動論によるモデル QCDによる理論計算 短距離パート

短距離パート(第3領域)の性質がQCDにもとづく理論計算で解明 されつつある

* 従来の中間子交換モデルでは、短距離パートを現象論的に 導入してきた。 * クオークモデルによる計算

整合性はどうなっているか?

QCDによる短距離相互作用と中間子交換モデルは両立可能か? もし可能であれば、どういう性質をあたえるか?(とくにYN、YY相互作用について)

ハドロン交換機構によるハドロン間ポテンシャル

共通の土台: Hadron Exchange Mechanism with SU(3)symmetric Coupling Constants

		NN `	YN,YY	πN,KN	K ^{bar} N	$\pi\pi,\pi K,N^{bar}N$
Julich	OHEP, Form Factor, No Phenomenological Core	0	0	0	Δ	Δ
Nijmegen	OHEP, TMEP, Pomeron(Quark-Gluon Effects) Form factor	0	0	0		
fgA,fgB (2000)	OBEP with short-range cutoff Phenomenological Core	0	0			
GSOBEP (2005)	OHEP+Source Function No Phenomenological Core	0	0	O (2)	Δ 010)	

fgA,fgB(PTP Vol.104, 995,2000):

Scalar meson masses are different between the models SRC + OBEP with cutoff(at r=0.4fm)

$$V = V_{core}(r) + [1-exp(-(r/r_c)^2]^4 V_{OBEP} r_c=0.4 fm$$

 $V_{core}(r) = V_c \exp(-(r/r_g)^2)$ $r_g = 0.5(0.49147)$ fm for fgA(fgB)

List of the values of V_c

fgA	{27}	{10*}	{10}	{8a}	{8s}	{1}
Even	2768	2277	40	1162	3579	173
Odd	28	178	267	2219	1072	-
fgB	{27}	{10*}	{10}	{8a}	{8s}	{1}
Even	2822	2473	75	41	256	230
Odd	5	3112	96	3962	3603	-

fgAの「改良版」

{10},{8s}{1}に大きな変化

- NN : 影響なし
- AN : 影響小さい
1S0:{8s}のみで統計的重みは小さい(10%)

SN:影響大きい I=3/2 3S1 {10}100% I=1/2 1S0{8s} 90%

AA、EN:影響大きい I=0 1S0 {1}{8s}: I=1 1S0{8s}: I=1 3S1{10}:

現象論的な知識=拘束条件の量と質に符合!!

Coupling Constants:

fgA	g(1)	g(8)	α	θ
scalar mesons	5.37138	0.76202	3.21258	-5.61
ps-mesons	0.14853	0.26600	0.49061	-23.92
vector mesons ge	3.44302	0.68648	1.00000	36.44
gm	4.72583	6.12176	0.43590	36.44
	В	Blue numbers	are fixed	
fgA'	g(1)	g(8)	α	θ
scalar mesons	5.41223	1.14430	2.12067	-6.39
ps-mesons	0.13503	0.26600	0.49061	-23.92
vector mesons ge	3.40179	0.68655	1.00000	36.44
gm	5.45281	6.02445	0.35211	36.44
fgA"	q(1)	q(8)	α	θ
scalar mesons	5.35849	1.12632	2.08724	-4.93
ps-mesons	0.13990	0.26600	0.49061	-23.92
vector mesons ge	3.49537	0.70097	1.00000	36.44
gm	5.41256	6.17634	0.34902	36.44

 Σ^+p - Σ^+p Elastic Cross sections

fgA,fgB : good fgA', fgA'' : overestimation

3S1 {10} 100% $0.01 \rightarrow 1.1$

 $\Sigma^{-}p-\Sigma^{-}p$ Elastic Cross sections

fgA,fgB : underestimation fgA',fgA'' : improved

1S0 {8s} 60% $1.3 \rightarrow 3.0$

 $\Sigma^{-}p$ - Λn Reaction Cross sections

fgA,fgB,fgA'.fgA'' : good

$\Sigma^{-}p-\Sigma^{0}n$ Reaction Cross sections

fgA'.fgA'' : overestimation ?

fgA.fgB : good ?

Σ -p Inelastic Capture Ratio:

	r =	=σ(Σ ⁻ p →Σ ⁰ r	n)/[$\sigma(\Sigma^{-}p \rightarrow \Sigma^{0}n) + \sigma(\Sigma^{-}p \rightarrow \Lambda n)$]
	r _a ,	_=(1/4)r(sing	let)+(3/4)r(triplet)
Ехр		r _{av} 0.33±0.05 0.474±0.016 0.465±0.011	
Calc)		
	fgA fgA' fgA''	0.467 0.516 0.511	fgA' and fgA'' cannot reproduce experimental data !

Σ⁺p(3S1) Strong repulsion

Σ⁺p(1S0) attraction

E⁻n(3S1) weak attraction

まとめ

○OBEP with cutoff+現象論的短距離力という枠組みは、実験データが整備される条件の下で、QCDと整合性をもつように思える。
NN data → Vc({27}): Vc({10*})= 1:0.8
YN, YY data → Vc({10}), Vc({8a}), Vc({8s}), Vc({1}) ???

QCD {27}:{10*}:{8a}:{8s}:{1}=1:0.8:1.1:0.2:4.0:-0.6

○QCDの短距離コア+OBEPというモデルは構築可能であると思われる YN、YY相互作用の予言を行うことも可能

○Hadron間相互作用への拡張 NN,YN,YY, πN,KN,K^{bar}N, ππ, N^{bar}N,πK