Charmed-hadron experiments at J-PARC

K. Ozawa (KEK), H. Noumi (RCNP)

Content Charmed Baryon Spectroscopy (J-PARC P50) Other related physics Summary

New High Momentum Beam Line

Construction of New Beam Line is proposed.

Characteristics of the beam line is following.

Primary Proton Beam (30GeV), 10¹⁰⁻¹² per spill

High Momentum un-separated secondary beam ($\leq 15 \text{GeV}/c$), 10⁷ per spill

Primary Proton Beam (8GeV) for COMET

Physics @ J-PARC high-p beam line

- Hadrons in nucleus -> Tomorrow
 - Hadron mass is dynamically generated and strongly related with medium properties.
 - Experimental information of hadron mass in nucelus

Hadron spectra

- Puzzles in hadron physics
 - States cannot be easily explained in simple manners
 - Unexpected states
- Internal structure of hadron should be investigated.
 - Charmed baryon spectroscopy can provide essential information, especially for Di-quark correlations

CHARMED BARYON SPECTROSCOPY

What are good building blocks of Hadrons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

Diquarks

Color-Magnetic Interaction of two quarks $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$

"Good Diquark": Strong Attraction $V_{CMI}({}^{1}S_{0}, \overline{3}_{c}) = 1/2 * V_{CMI}({}^{1}S_{0}, 1_{c})$ [qq] [qq]

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

 $M^2 \sim \Omega * L$

A distance of $[qq]-q/\overline{q}-q$ increases as L increases.

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

"diquark" in low-lying modes

Charmed Baryon

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$

Weak Color Magnetic Interaction with a heavy Quark

[qq] is well Isolated and developed

- Level structure of Y_c* provides diquark properties
 - "diquark mass"

Precision measurement of collective [qq] orbital E_x gives a [qq] mass

Covariant Oscillator QM $\sigma_{q}\sigma_{q}$, SO w/ Universal Spring [qq] [PTP 91, 775('94)] L=2 $M^2 = \Omega_{\lambda}L + \Omega_{\rho}L + M_{\rho}$ $\Omega_{\lambda} = 2K^{1/2} \sqrt{2(M_{O} + m_{aq})^{3} / (M_{O} m_{aq})}$ L=1 λ mode *E*,~300 MeV [qq] motion G.S.

Precision measurement of collective [qq] orbital E_x gives a [qq] mass

Covariant Oscillator QM $\sigma_{q}\sigma_{q}$, SO w/ Universal Spring [qq] [PTP 91, 775('94)] L=2 $M^2 = \Omega_{\lambda}L + \Omega_{\rho}L + M_{\rho}$ $\Omega_{\lambda} = 2K^{1/2} \sqrt{2(M_{O} + m_{aa})^{3} / (M_{O} m_{aa})}$ L=1 λ mode $dE_x \sim dm_{aa}/30 [\text{MeV}]$ $E_{x}^{2}300$ Me [qq] motion G.S.

Limited # of Charmed Baryons have yet been observed.

What we will measure...

Missing mass spectroscopy via the (π, D^*) reactions.

- Excitation Energies and widths of charmed baryons
 - From the G.S. to highly E.S. of $E_x > 1$ GeV w/ ~5.5 MeV res.
 - Independent of decay final states
- Decay properties of the populated states
 - Strong BG suppressions for the parent states
 - Decay branching ratios (Partial widths)
 - Possible assignment of spins

Production Cross Section No exp. data : σ <270nb@13 GeV/c (PRL55, 154(1985)) Estimation: 10^{-4~-5} of $\sigma(\pi^-p$ ->KA, K Σ) ~ 1 nb

Binary Reaction at High E is well described as quark planar diagram.

A.B. Kaidalov, ZPC12, 63(1982)

Production Cross Section No exp. data : σ <270nb@13 GeV/c (PRL55, 154(1985)) Estimation: 10^{-4~-5} of $\sigma(\pi^-p$ ->KA, K Σ) ~ 1 nb

Binary Reaction at High E is well described as quark planar diagram.

A.B. Kaidalov, ZPC12, 63(1982)

High-res., High-mom. Pion Beam

- High-intensity secondary Pion beam can be delivered.
 - -2 msr•%、1.0 x 10⁷ Hz @ 15GeV/c π
- High-resolution beam: ∆p/p~0.1%
 - Momentum dispersion and eliminate 2nd order aberrations

- Soft π from D^{*-} decays
- (Decay products from Y_c^*)
- High Resolution
- High Rate
 - SFT/SSD op. >10M/spill at K1.8

Measurements methods

- Missing Mass method using forward D* meson
- Background is a large issue.
 - BG Production cross section of 1mb is expected.
- Background suppression without signal bias
 - D* meson tag instead of "easy" D meson tag
 - Additional correlation gives additional rejection power
 - Use D* -> D π decay mode
 - Large acceptance
 - Signal to Background ratio is determined by spectrometer resolution on D* and D meson measurements.
 - Good mass resolution is required
 - D^0 meson: 4.5 MeV, D* meson: 0.7 MeV

BG reduction by D*- and D⁰ mass cuts

BG reduction

 40_{F}

.....

10

D*cut

Expected Spectrum in the (π, D^{*-}) reaction

If 10 times more Background?

- Assuming 10⁻⁷ and 10⁻⁶ BG reduction, generated by using the JAM code
 BG: σ_{tot} = 1.8 mb
- For each Y_c*, production cross section of 1 nb, mass and width from PDG
 ~1000 counts for each Y_c*

24

Signal Sensitivity

Signal: 1000 events BG: 10⁻⁶ reduction

What we will measure...

Missing mass spectroscopy via the (π ,D*-) reactions.

- Excitation Energies and widths of charmed baryons
 - From the G.S. to highly E.S. of $E_x > 1$ GeV w/ ~5.5 MeV res.
 - Independent of decay final states
- Decay properties of the populated states
 - Strong BG suppressions for the parent states
 - Decay branching ratios (Partial widths)
 - Possible assignment of spins

Structure and Decay Partial Width

Excited (qq)

Good [qq]

- $\Lambda(1520)$ -> NK (D wave!)> $\pi\Sigma$, similarly $\Lambda(1820)$, $\Lambda(2100)$
- Possible explanation of narrow widths of Charmed Baryons

Multi-meson productions (BG)

Y_c* production (Signal)

Forward proton detection

- Further BG reduction (significance $\Rightarrow \times 1.5$)
 - Yied for Y_c^* is reduced to be 1/4
 - S/N is improved from $1:15 \Rightarrow 1:6$ @ $\Lambda_c(2880)$

Summary for charmed baryon

- Charmed Baryon Spectroscopy via the (π,D*-) reactions
 - Shed light on "diquark": colored object in hadrons
 - Clarify a Level Structure of the charmed baryons
 - From the ground state to highly excited states of $E_x \sim 1 \text{ GeV}$
 - Independent of decay final states
 - Decay Branching Ratios (Partial Widths)
 - Suppressions of $[qq^{bar}]$ -[qqQ] decays if "Good diquark" in Y_c^*
 - Possible assignment of spins
- A New Project of Hadron Physics at J-PARC, High-p BL
 - High-res., High-intensity 2ndary Beam
 - Large Acceptance, Multi-Particle Spectrometer

OTHER RELATED EXPERIMENTS

Basic Beam Specifications

- proton beam, $E_{kin} = 30 \text{ GeV}$: $\sqrt{s} = 7.7 \text{ GeV}$
- proton beam, $E_{kin} = 50 \text{ GeV}$: $\sqrt{s} = 9.8 \text{ GeV}$
 - proton target at rest
 - Beam intensity: up to 10¹² per spil
 - Double Charmed (Ξ_{cc}) can be formed at 50GeV
- Secondary beam
 - Un-separated beam contains K and p.
 - Intensity depends on its momentum, however, we can have some intensity up to 20 GeV.

Sanford-Wang formula

production 2.5 degree, 15 kW loss Pt target acceptance: 2 msr%, beam line length: 132 m

Physics with Kaon

- Un-separated secondary beam contains 1-10% Kaons. If a smart trigger system to select kaon is adopted, kaon physics can be done using a high momentum beam.
- Physics examples under discussions,
 - Ξ_{c} Spectroscopy
 - Investigate Strangeness and Charm sector
 - K⁻ + p -> Ξ_c + D⁻ (Production Threshold: 10 GeV/c)
 - Use the same spectrometer with charm baryon spectroscopy. Experimental issues, such as yield, background, resolutions, are being evaluated.
 - Charmed exotic baryons
 - Θ_{cs} can be searched using a similar reaction.
 - K⁻ + p -> Θ_{cs} + D⁺

Charmed Deuteron: $\Lambda_c N$

- Production process candidate1: $\pi + p \rightarrow \Lambda_c + D$
 - Minimum momentum: 4 GeV /c @ 15 GeV/c beam
 - Target: ³He or heavy nucleus?
 - Two step process and forward nucleon emission
 - Tiny probability. How much?
- Production process candidate2: pp-bar -> $\Lambda_c + \Lambda_c$ -bar
 - Almost stopped Λ_c
 - Difficulties
 - How to make a bound state? Deuteron beam?
- Production process candidate2: Heavy ion collisions
 - Production + bound state with a spectator
 - Need an upgrade of accelerator

Summary

- New experiment using a high momentum beam line at J-PARC has been proposed to perform a charmed baryon spectroscopy.
- Other related experiments are also under discussions.
 - Double Charmed (Ξ_{cc}) at 50GeV
 - $-\Xi_{c}$ Spectroscopy
 - Charmed exotic baryons
 - $-\Lambda_c N$ bound state