KEK theory center workshop on Hadron physics with high-momentum hadron beams at J-PARC in 2013

Experiment on meson-mass modifications at J-PARC

Satoshi Yokkaichi RIKEN Nishina Center

- physics motivation : hadron mass generation mechanism in QCD
- vector meson measurements
- J-PARC E16 : invariant mass spectroscopy
 - experimental method
 - expected mass spectra
- Related experiment at J-PARC

Origin of Mass (Higgs)

• Origin of lepton and quark mass: Higgs

Origin of Mass (QCD)

- Origin of lepton and quark mass: Higgs
- Origin of quark and hadron mass : spontaneous breaking of chiral symmetry, originally proposed by Nambu
 - Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter

Vector meson measurements in the world

- HELIOS/3 (ee, μμ) 450GeV p+Be / 200GeV A+A
- DLS (ee) 1 GeV A+A
- CERES (ee) 450GeV p+Be/Au / 40-200GeV A+A
- <u>E325 (ee,KK) 12GeV p+C/Cu</u>
- NA60 (μμ) 400GeV p+A/158GeV In+In
- PHENIX (ee,KK) p+p/Au+Au
- **STAR** ($\pi\pi$, KK, ee) p+p/Au+Au
- HADES (*) (ee) 1-4 GeV p+A/ 1-2GeV A+A
- CLAS-G7 (*) (ee) 1~2 GeV γ+A
- <u>J-PARC E16 (ee)</u> 30/50GeV p+A
- HADES/FAIR (ee) 2~8GeV A+A
- *CBM/FAIR* (ee) 20~30GeV A+A
- **TAGX** (ππ) ~1 GeV γ+A
- LEPS (KK) 1.5~2.4 GeV γ+A
- **CBELSA/TAPS(*)** $(\pi^{0}\gamma)$ 0.64-2.53 GeV γ + p/Nb
- ANKE (KK) 2.83 GeV p+A

published/ 'modified' published/ 'unmodified' running/in analysis future plan as of 2012/Sep

dilepton measurement

Dilepton spectrum measurements in the world

Dilepton spectrum measurements in the world

NA60: ρ width broadening PHENIX: enhancement (cannot be explained yet) *Chiral restoration at High-T is not confirmed yet*

- 12GeV p+A (C/Cu) $\rightarrow \rho, \omega, \phi$ in the e⁺e⁻ channel
- below the ω and φ peaks, statistically significant excesses over the known hadronic sources including experimental effects
- interpreted : mass dropping 9.2%(ρ , ω) , 3.4% (ϕ)

Dilepton spectrum measurements in the world

Open question:

Observed hadron modifications are signature of the chiral restoration / evidence of the QCD mass generation?

E325: ρ/ω mass dropping CLAS-g7: p broadening HADES: low-mass enhancement Partial chiral restoration at ρ_o is measured w/ the deeply bound pionic atom

Experimental methods:pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the ϕ modification?
 - proton induced : better S/N than the HI collisions
 - large stat. using a high intensity beam : cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate

J-PARC E16 experiment

Systematic study of the modification of vector meson spectra in nuclei to approach the chiral symmetry restoration

J-PARC E16	Collaboration
RIKEN	S.Yokkaichi, K. Aoki, Y. Aramaki, H. En'yo,
	J. Kanaya, D. Kawama, F. Sakuma,
	T.N. Takahashi
KEK	K.Ozawa, M. Naruki, R. Muto,
	S. Sawada, M. Sekimoto
U-Tokyo	Y.S. Watanabe, Y.Komatsu, S.Masumoto,
-	K.Kanno, W.Nakai, Y. Obara, T.Shibukawa
CNS, U-Tokyo	H. Hamagaki
Hiroshima-U	K. Shigaki
JASRI	A. Kiyomichi

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10^{10} /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance : x~ 5
 - : $x \sim 2$ of production Higher energy beam (12 \rightarrow 30/50 GeV)
 - Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)
- **Proposed Spectrometer** Plan View Prototype Module nuclear targets 5m beam LeadGlass alorimeter EM calorimeter return 30/50 GeV proton beam **GEM** Tracker adiator Hadron blind electron identifier magnet pole piece GEM tracke Pad chamber 26 detector modules High-p-WS@KEK 2013Jan17 S.Yokkaich

High-p line in the Hadron hall

• 3 years plan of the construction : budget requested by KEK to MEXT

15

<u>High-p line in the Hadron hall</u>

• 3 years plan of the construction : budget requested by KEK to MEXT

E16 Schedule

•2007: stage1 approval

•2008-2010 : development of prototype detectors w/ Grantin-Aid(2007-8, 2009-13)

•JFY 2011-12 : additional parts of the spectrometer magnet , R/O circuit development

- 1st module of production type (GT and HBD)
- 1st test type preamp for GT
 - tests @ J-PARC K1.1BR
- JFY 2013 : start the production of the detectors/circuits
- JFY 2013/4Q-2014/1Q : magnet reconstruction
 - start the detector install

2014/4Q : ready for the first beam

 staged goal of the spectrometer construction (w/ 8 detector modules)

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10 10 /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

Expected Invariant mass spectra in e[±]e[±]

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure : •
 - second peak is made by inside-nucleus decay (modified meson) : amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

Discussion : modification parameters

р

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

 $k_{1} = 0.034_{-0.007}^{+0.006}$ $k_{2}^{\text{tot}} = 2.6_{-1.2}^{+1.8}$

E16 : mass resolution requirement

- mass resolution should be kept less than ~10MeV
- Very ideal case : very slow mesons w/ best mass resolution:

ϕ -mass modification at ρ_{c}

- (vacuum value : m(0)=1019.456MeV, Γ(0)=4.26MeV)
 - $m(\rho)/m(0) = 1 k_1(\rho/\rho_0)$, $\Gamma(\rho)/\Gamma(0) = 1 + k_2(\rho/\rho_0)$
- determined by E325 (PRL98(2007)042581)
 - Δm : -35 (28~41) MeV, Γ : 15 (10~23) MeV
- Hatsuda, Lee [PRC46(1992)34)] QCD sum rule
 - Δm : -12~44 MeV (k=(0.15±0.05)y, y=0.12~0.22),
 - Γ : not estimated
- Klingl, Waas, Weise [PLB431(1998)254] hadronic
 - taking account of K-mass modification
 - Δm : < -10 MeV, Γ : ~45 MeV
- Oset , Ramos [NPA 679 (2001) 616] hadronic
 - different approach for K-mass
 - Δm : < -10 MeV, Γ : ~22 MeV for m=1020MeV, ~16MeV for m=985 MeV-
- Cabrera and Vacas [PRC 67(2003)045203] OR01+ hadronic
 - Δm : -8 MeV, Γ : ~30 MeV for m=1020MeV

expected shape w/ various parameters

expected shape w/ various parameters

<\overline{S}\$>(ρ) (\overline{S}\$s condensate in medium whose density is ρ) is relevant the φ mass in nuclear matter under the QCD sum rule analysis by Hatsuda & Lee (PRC46(92)R34 : HL92)

- linear approx. : $\langle \overline{s}s \rangle(\rho) = \langle \overline{s}s \rangle$ (vacuum) + $\langle N | \overline{s}s | N \rangle \propto \rho$

- Recently <N|ss|N> (so called "strangeness content in nucleon") is calculated with Lattice QCD
 - found to be smaller than the assumed value in HL92, however, agree within the error : predicted value '2-4%' is not so affected

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

- current E325 analysis neglects the dispersion (limited by the statistics)

- current E325 analysis neglects the dispersion (limited by the statistics)

- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter k₁(p), to all nuclear targets in each momentum bin 2^{0.3}

- prediction for φ by S.H.Lee(p<1GeV/c)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter k₁(p), to all nuclear targets in each momentum bin 2^{0.3}

momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest (p=0)
 - extrapolation to p=0 if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

Impact of E16

- hadron modification are observed in several experiments but interpretation is not converged : "mass dropping or broadening?"
 - theoretically the question is oversimplified : T- dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
- pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0$, T=0) using ϕ meson
 - confirm the E325 observation with improved resolution(x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 - first measurement of the dispersion relation of hadrons in nuclear matter
- establish a low energy phenomenon which can be predicted by means of QCD
 - mass generation due to the chiral symmetry breaking
- Further Step (future experiment)
 - slow ϕ at HIHR beam line with $10^9 \pi$ beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 - chiral phase transition in the high-density region

Related experiments at J-PARC

- ω bound state/invariant mass (E26) : K1.8 or High-p
- φ bound state (E29) : K1.1 or K10
- η bound state and N(1535) (LoI) : K1.8BR or HIHR
- magnetic moment of Λ at finite density
- dilepton decay of slow ϕ using 10⁹ π beam at HIHR

meson bound state in nuclei : E26 (ω)

- ω bound state (J-PARC E26 / K. Ozawa)
 - missing mass spectroscopy in π⁻+ A reaction –
 select the bound state
 - elementary : ~2 GeV/c π^- + p $\rightarrow \omega$ + n
 - and measure the ω decay to $\pi^{\scriptscriptstyle 0}\gamma$
 - $P\omega$ is low, and decay in nuclear matter

Theoretical predictions of *missing mass* and *invariant mass*

<u>meson bound state in nuclei: E29 (ϕ)</u>

- ϕ bound state : (J-PARC E29 / H. Ohnishi)
 - missing mass spectroscopy in pbar + A / π^- + A reaction
 - elementary: ~1.3 GeV/c pbar + p $\rightarrow \phi + \phi$
 - (or ~2 GeV/c π^- + p \rightarrow ϕ + n)
 - measurements of the dilepton decay of $\boldsymbol{\varphi}$ is difficult

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum
 - A major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration
 - Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra
 - but discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam at the High-p line.
 - confirm the observation by KEK-PS E325 and provide more precise information of the mass modification
- E26, E29, etc. will be performed at new beam lines in the Hadron hall, to explore the chiral symmetry at finite density