# Nuclear parton distributions and structure functions

W. Bentz, T. Ito (Tokai Univ., Japan)
I. Cloët (Univ. Washington, USA)
H. Matevosyan, A.W. Thomas (Univ. Adelaide, Australia)

KEK Workshop, Jan. 7-8, 2011

## **Theme**

Are nucleon properties modified when they are bound inside a nucleus?

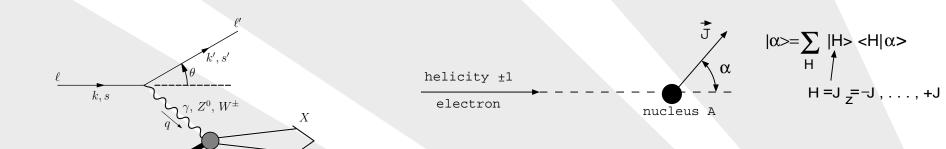




#### Points of this talk:

- Unpolarized EMC effect
- Parity violation in DIS, NuTeV anomaly
- Polarized EMC effect
- Prospect: Semi-inclusive DIS on nuclear targets

# Deep inelastic scattering



**Photon cross section** (B.L.) for electron helicity  $\pm$ , target helicity H

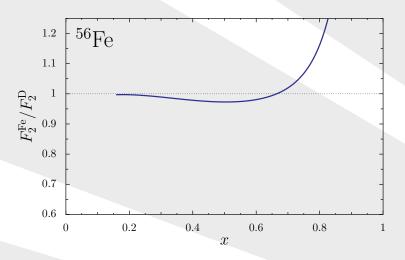
$$(x_A = {Q^2 \over 2 \overline{M}_N 
u} \ {
m with} \ \overline{M}_N = M_A/A, \ y = {\nu \over E})$$
:

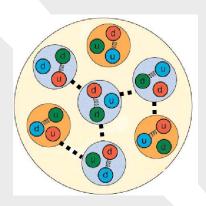
$$\frac{d\sigma_{\pm}^{H}}{dx_{A}dy} = \frac{2\pi\alpha^{2}}{Q^{2}} \left[ \frac{2 - 2y + y^{2}}{x_{A}y} F_{2A}^{H}(x_{A}) \pm 2 (2 - y) g_{1A}^{(H)}(x_{A}) \right] 
F_{2A}^{H}(x_{A}) = x_{A} \sum_{q} e_{q}^{2} q_{A}^{H}(x_{A}) = x_{A} \sum_{q} e_{q}^{2} \left( q_{A\uparrow}^{H}(x_{A}) + q_{A\downarrow}^{H}(x_{A}) \right) 
g_{1A}^{H}(x_{A}) = \frac{1}{2} \sum_{q} e_{q}^{2} \Delta q_{A}^{H}(x_{A}) = \frac{1}{2} \sum_{q} e_{q}^{2} \left( q_{A\uparrow}^{H}(x_{A}) - q_{A\downarrow}^{H}(x_{A}) \right)$$

Note: There are 2J+1 independent distributions (or structure functions) for spin J target.

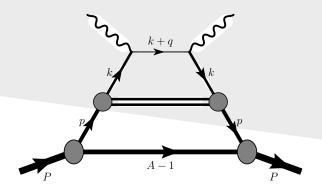
# Prior to discovery of EMC effect

# Basic picture: Nuclear mean fields couple to nucleons like elementary particles.





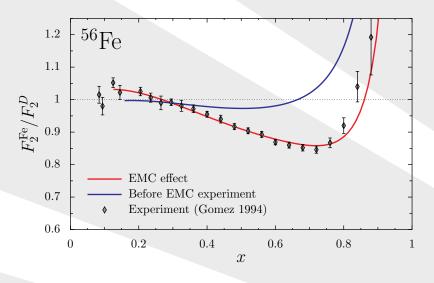
[Nucleon distribution in nucleus]  $\otimes$  [quark distribution in free nucleon]: Binding effects on <u>nucleon</u> level.

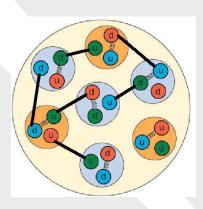


Constituent quark and diquark do not experience nuclear mean fields.

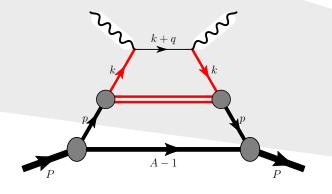
# After discovery of EMC effect

#### Better picture: Nuclear mean fields couple to quarks in the nucleons!





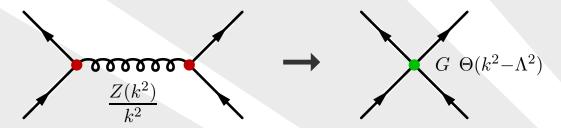
[Nucleon distribution in nucleus]  $\otimes$  [quark distribution in bound nucleon]: Binding effects on quark level.



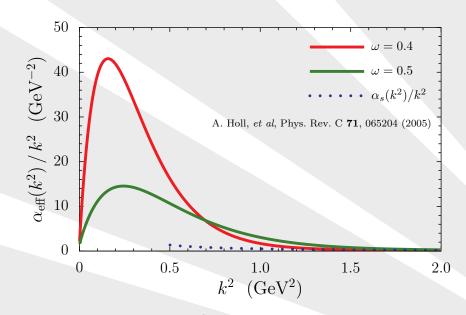
Constituent quark and diquark **expe- rience** the nuclear mean fields.

### Nambu-Jona-Lasinio Model

Interpreted as low energy chiral effective theory of QCD



- Motivated by infrared enhancement of gluon propagator
  - Dyson-Schwinger equations
  - lattice QCD



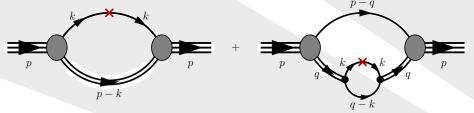
- Lagrangian:  $\mathcal{L}_{\mathrm{NJL}} = \overline{\psi} \left( i \, \nabla \!\!\!\!/ m \right) \psi + G \left( \overline{\psi} \, \Gamma \, \psi \right)^2$
- Spontaneous breakdown of chiral symmetry
- Easily extended to finite density and temperature

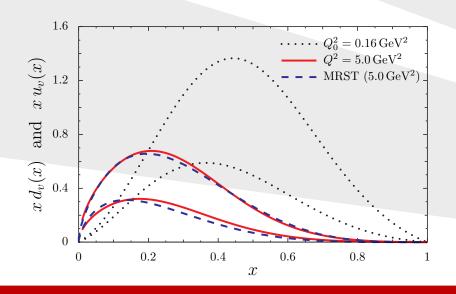
#### Free nucleon

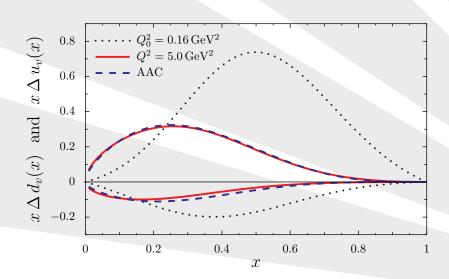
• Quark-diquark description based on the Faddeev method. We include scalar  $(0^+)$  and axial vector  $(1^+)$  diquarks.



⇒ Calculate parton distributions in the free nucleon.







#### **Nuclear matter**

- <u>Nuclear matter</u> described in mean field approximation:
   Self consistent mean scalar and vector fields couple to the quarks in the nucleons.
- Mean fields in effective quark Lagrangian

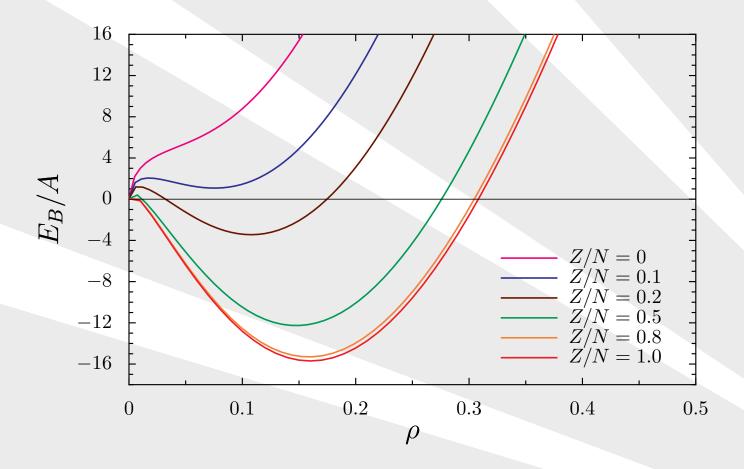
$$\mathcal{L} = \overline{\psi} \left[ i \; \nabla - M - \gamma^0 \left( \omega_0 + \tau_z \rho_0 \right) \right] \psi - \frac{(M-m)^2}{4G_\pi} + \frac{\omega_0^2}{4G_\omega} + \frac{\rho_0^2}{4G_\rho}$$
 are calculated by minimizing the energy density. Here 
$$M = m - 2G_\pi \langle \overline{\psi} \psi \rangle \,,$$
 
$$\omega_0 = 2G_\omega \langle \overline{\psi} \gamma_0 \psi \rangle \,, \; \rho_0 = 2G_\rho \langle \overline{\psi} \gamma_0 \tau_3 \psi \rangle .$$

- These mean fields are incorporated in the quark propagators to calculate parton distributions in the bound nucleon.
- Convolution to get the parton distributions in nuclear matter:

$$q_A(x_A) = \sum_{N=p,n} f_N(y) \otimes q_N(z)$$
, where

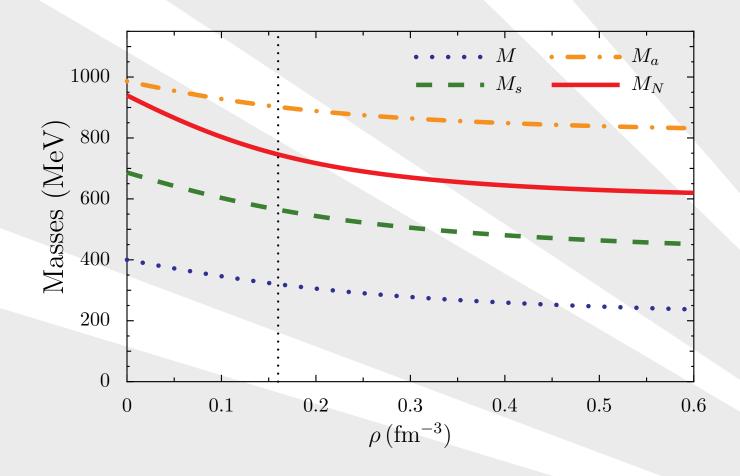
$$f_N(y) = p \left( \gamma^+, \gamma^+ \gamma_5 \right) \delta \left( y - \frac{p^+}{M_A/\sqrt{2}} \right)$$

# Binding energy of nuclear matter



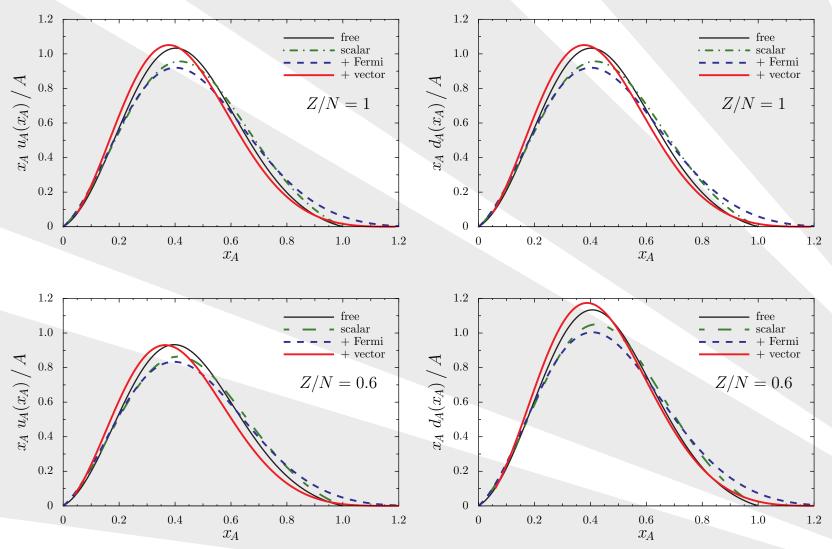
Mean vector fields:  $\omega^0 = 2G_\omega \langle \psi^\dagger \psi \rangle$ ,  $\rho^0 = 2G_\rho \langle \psi^\dagger \tau_3 \psi \rangle$ Vector potentials:  $V_{p(n)} = 3\omega^0 \pm \rho^0$ ,  $V_{u(d)} = \omega^0 \pm \rho^0$  $G_\omega \Leftrightarrow \text{saturation point for } Z = N$ ,  $G_\rho \Leftrightarrow \text{symmetry energy.}$ 

# Effective masses in symmetric nuclear matter



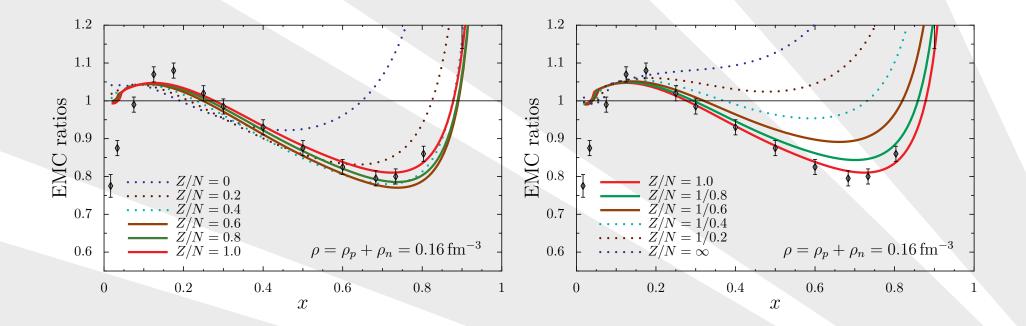
 $M\dots$  constituent quark mass  $(M=m-2G_\pi\langle\overline{\psi}\psi\rangle)$   $M_{s(a)}\dots$  scalar (axial vector) diquark mass (pole of qq t-matrix)  $M_N\dots$  nucleon mass (pole of q-diquark t-matrix).

# In-medium distributions: Flavor dependence



- In-medium distributions softer than free ones: Binding effect on quark level.
- For N>Z, u-quarks feel additional binding (symmetry energy!)  $\Rightarrow$  larger medium effects for u-quarks in neutron rich matter. (This effect is caused mainly by the  $\rho^0$  field.)

# EMC effect: Isospin dependence



EMC ratio = 
$$\frac{F_{2A}}{F_{2A,\mathrm{naive}}} \simeq \frac{4u_A + d_A}{4u_{A\mathrm{f}} + d_{A\mathrm{f}}}$$
, where  $q_{A\mathrm{f}} = Zq_{p\mathrm{f}} + Nq_{n\mathrm{f}}$ .

- Case N > Z: When matter becomes neutron-rich, medium-modification of u-quarks **increases**, but their number **decreases**  $\Rightarrow$  EMC effect becomes more pronounced as Z/N decreases from 1 to 0.6, but for Z/N < 0.6 the EMC effect becomes smaller because d-quarks begin to dominate.
- Case N < Z: When matter becomes proton-rich, medium modification of u-quarks **decreases** and their number **increases**  $\Rightarrow$  EMC effect becomes smaller.

# **Applications**

This flavor dependence should show up in many places, e.g.,

$$e + A \to e' + \pi^{\pm} + X, \quad \pi^{\pm} + A \to (\ell^{+}\ell^{-}) + X.$$

**Here**: Consider some physical quantity R, which is a ratio of nuclear parton distributions:

$$R = \frac{c_1 u_A + c_2 d_A}{c_3 u_A + c_4 d_A} \simeq A + B \frac{d_A - u_A}{d_A + u_A}$$
$$\equiv R_0 + \delta_{\text{naive}} R + \delta_{\text{med}} R$$

A, B =known constants,

 $R_0 = A =$ value for N = Z,

 $\delta_{\text{naive}}R =$ **neutron excess correction** obtained from **free** (no-medium) parton distributions.

• If R could be measured, any deviation from the "naive value"  $R_0 + \delta_{\mathrm{naive}} R$  would be an indication for the in-medium flavor dependence  $\delta_{\mathrm{med}} R$ .

Note: Effects of charge symmetry breaking  $(m_d > m_u)$  should also be considered.

# **Application 1: Parity-violating DIS**

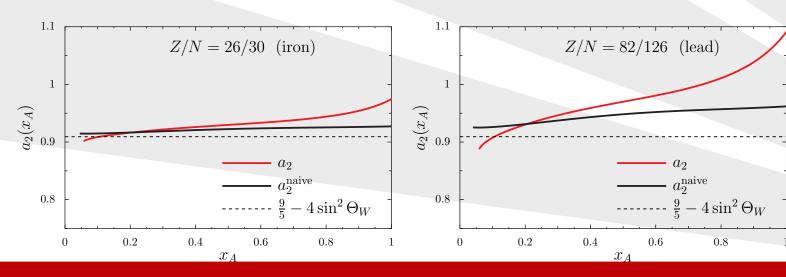
#### Parity violation from $\gamma - Z^0$ interference:

$$\sum_{X} \left| \begin{array}{c} e' \\ P \\ P \end{array} \right| \left| \begin{array}{c} X \\ P \\ A \end{array} \right| \left| \begin{array}{c} X \\ P \\ A \end{array} \right| \left| \begin{array}{c} X \\ A \end{array} \right| \left| \left| \begin{array}{c} X \\ A \end{array} \right| \left| \begin{array}{c}$$

leads to electron spin asymmetry  $A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$  for unpolarized targets:

$$A_{PV} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[ a_2(x_A) + \text{small corrections} \right]$$

$$a_2 \simeq \left( \frac{9}{5} - 4\sin^2\Theta_W \right) + \frac{12}{25} \frac{d_A - u_A}{d_A + u_A}$$



# **Application 2: DIS of neutrinos**

NC: 
$$\sum_{X} \begin{vmatrix} \nu \\ \nu \end{vmatrix} \xrightarrow{Z^{0}} A \begin{vmatrix} X \\ A \end{vmatrix}^{2}$$
 CC:  $\sum_{X} \begin{vmatrix} e^{-} \\ \nu \end{vmatrix} \xrightarrow{W^{+}} A \begin{vmatrix} X \\ A \end{vmatrix}^{2}$ 

In 2002, the NuTeV collaboration measured the following Paschos-Wolfenstein ratio (all cross sections integrated over  $x_A$  and y):

$$R = \frac{\sigma(\nu \text{Fe} \to \nu \text{X}) - \sigma(\overline{\nu} \text{Fe} \to \overline{\nu} \text{X})}{\sigma(\nu \text{Fe} \to \mu^{-} \text{X}) - \sigma(\overline{\nu} \text{Fe} \to \mu^{+} \text{X})}$$

$$\simeq \left(\frac{1}{2} - \sin^{2}\Theta_{W}\right) - \left(1 - \frac{7}{3}\sin^{2}\Theta_{W}\right) \frac{\langle x_{A}d_{A} - x_{A}u_{A}\rangle}{\langle x_{A}d_{A} + x_{A}u_{A}\rangle}$$

$$\equiv R_{0} + \delta_{\text{naive}}R + \delta_{\text{med}}R$$

- If the Standard Model value of  $\sin^2 \Theta_W$  is used: Measured R deviates from the "naive value"  $R_0 + \delta_{\text{naive}} R$  ( $\Rightarrow$  "NuTeV anomaly").
- However: Including medium effects, and also charge symmetry breaking effects ( $m_d > m_u$ ), the measured value of R is reproduced with the Standard Model value of  $\sin^2 \Theta_W$ : There is no anomaly!

#### Finite nuclei

Self consistent calculation in progress . . . For the present, we use the following method (for  $N \simeq Z$  nuclei):

- Assume Woods-Saxon scalar and vector potentials for nucleons: Depth from self consistent nuclear matter calculation ( $V_s = -194$  MeV,  $V_v = 133$  MeV), text book values for  $r_0 = 1.2$  fm, a = 0.65 fm.
- Calculate average scalar and vector fields for each nucleon orbit, and translate to average fields for quarks by using the quark-diquark equation. Use these fields in the quark propagators to calculate quark distributions in nucleons.
- Calculate nucleon momentum distributions for each orbit, and use convolution to get the nuclear quark distributions.

# **Application: Polarized EMC effect**

Definition of spin dependent EMC ratio

$$R_s^H(x) = \frac{g_{1A}^H(x_A)}{P_p^H g_{1p}(x) + P_n^H g_{1n}(x)} \xrightarrow{\text{NR,no-medium}} 1$$

where the P's are the proton and neutron polarization factors:  $P_{\alpha}^{H} = \langle J, H | 2S_{z}^{\alpha} | J, H \rangle \ (\alpha = p, n)$ .

• Only few (valence) nucleons contribute to nuclear polarization  $\Rightarrow$   $g_{1A}^H \propto 1/A$  (relative to  $F_{2A}$ .)

**Possible candidates for measurement**: Stable nuclei with polarization dominated by protons; A not too large ( $^{11}$ B,  $^{15}$ N, etc).

# Nuclear spin sums

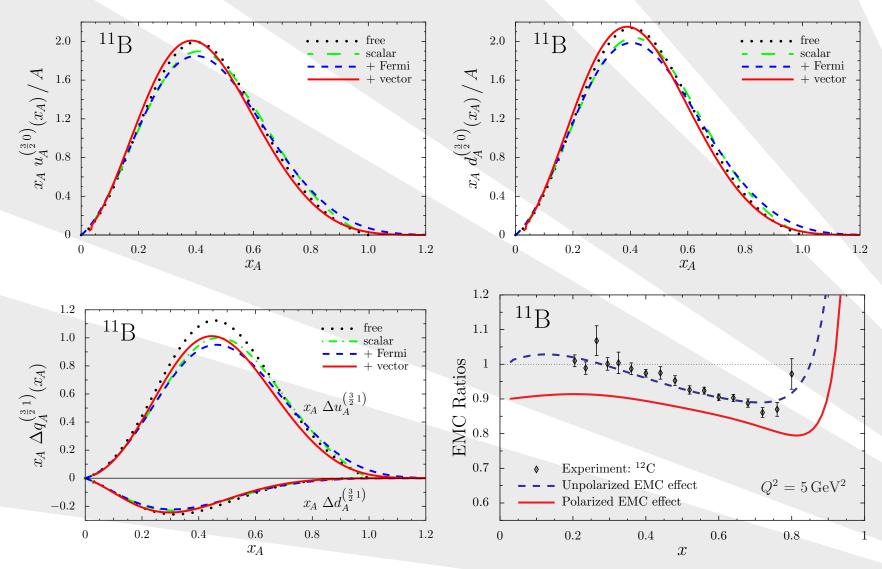
#### Nuclear spin sums:

$$\int dx_A \, \Delta q_A^H(x_A)$$

$$= (N_{q\uparrow/N\uparrow} - N_{q\downarrow/N\uparrow}) \times (N_{N\uparrow/A} - N_{N\downarrow/A})$$

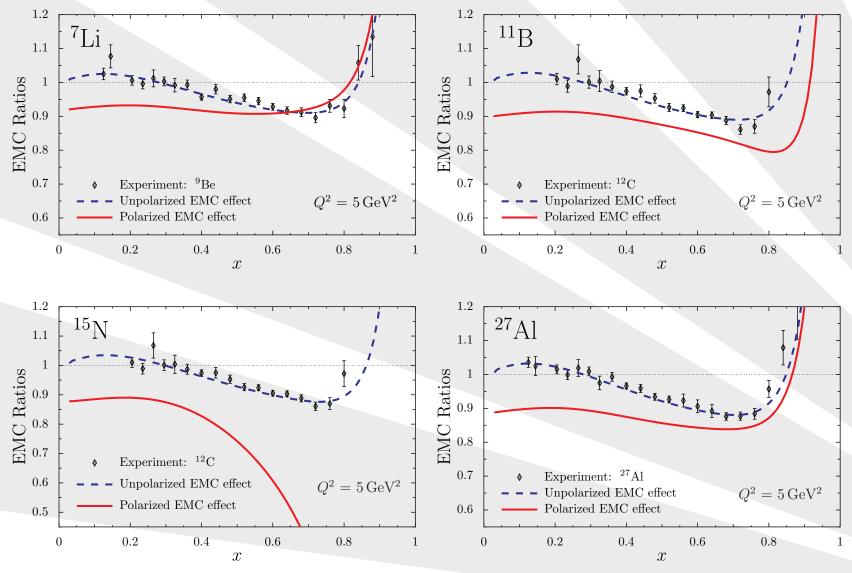
$$= (\text{spin sum for nucleon}) \times (\text{nuclear polarization factor})$$

Interesting connections to other spin phenomena in nuclei, like Gamow-Teller matrix elements.



(J,K)=(3/2,0) is the lowest multipole for unpolarized case, (J,K)=(3/2,1) is the lowest multipole for polarized case.

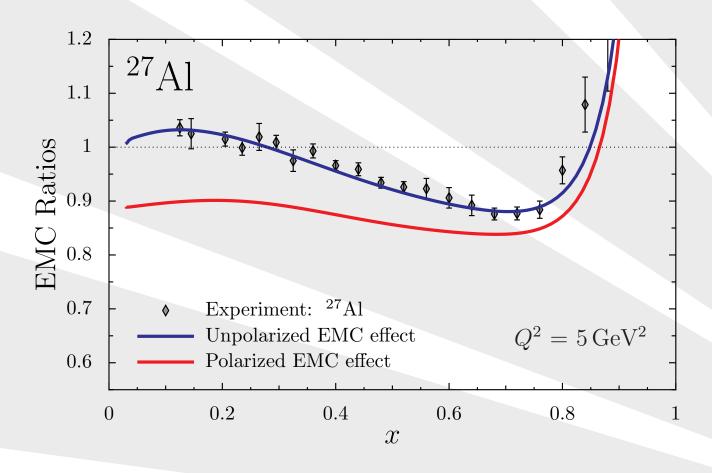
## EMC in finite nuclei



- Unpolarized case: Nuclear vector potential leads to rescaling of Bjorken x, and plays the essential role!
- Polarized case: Nuclear scalar potential (smaller quark mass) leads to quenching of quark spin sum and enhancement of quark orbital angular momentum!

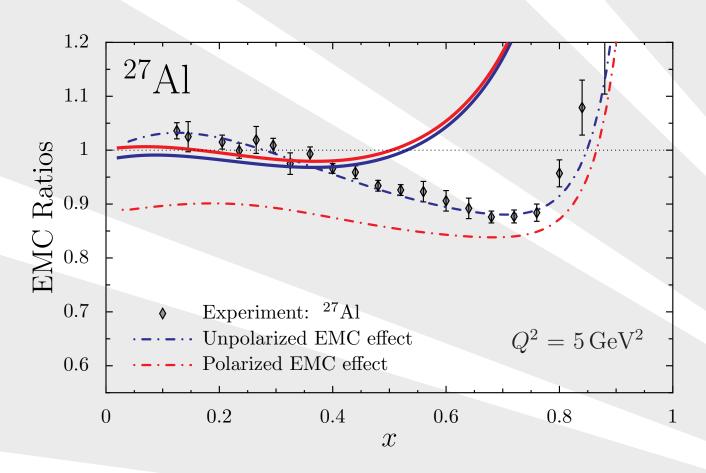
# Quark effects in finite nuclei

## EMC ratios with medium modified quark distributions:



# Quark effects in finite nuclei

## EMC ratios with free nucleon quark distributions:



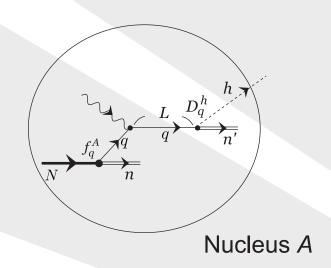
# Results for spin sums:

|                         | $\Delta u$ | $\Delta d$ | Σ    | $g_A$ |
|-------------------------|------------|------------|------|-------|
| p                       | 0.97       | -0.30      | 0.67 | 1.27  |
| <sup>7</sup> Li         | 0.91       | -0.29      | 0.62 | 1.19  |
| <sup>11</sup> B         | 0.88       | -0.28      | 0.60 | 1.16  |
| $^{15}N$                | 0.87       | -0.28      | 0.59 | 1.15  |
| <sup>27</sup> <b>AI</b> | 0.87       | -0.28      | 0.59 | 1.15  |
| nucl. matt.             | 0.74       | -0.25      | 0.49 | 0.99  |

- Isoscalar spin sum:  $\Delta u_A + \Delta d_A \equiv \Sigma \cdot (P_p + P_n)$ , where  $\Sigma \equiv \Delta u + \Delta d$  is the isoscalar spin sum for a nucleon bound in the valence level.
- Isovector spin sum:  $\Delta u_A \Delta d_A \equiv g_A \cdot (P_p P_n)$ , where  $g_A \equiv \Delta u \Delta d$  is the isovector (Bjorken) spin sum for a nucleon bound in the valence level.

# Outlook: SIDIS on nuclear targets (EIC)

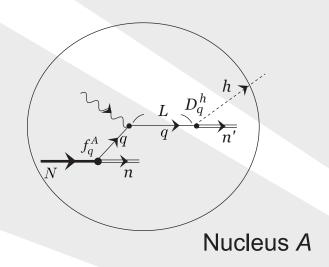
Recent data for nuclear targets (HERMES, JLab) indicate medium modification of SIDIS process:



- Distribution function  $f_q^A \Leftrightarrow \mathsf{EMC}$  effect.
- ullet Average hadron formation length L.
- Quark energy loss in medium.
- Fragmentation function  $D_q^h$ .
- Interaction of hadron h with medium.

# Outlook: SIDIS on nuclear targets (EIC)

Recent data for nuclear targets (HERMES, JLab) indicate medium modification of SIDIS process:



- Distribution function  $f_q^A \Leftrightarrow \mathsf{EMC}$  effect. (Done!)
- Average hadron formation length L. (Lund model)
- Quark energy loss in medium. (Modified evolution)
- Fragmentation function  $D_a^h$ . (Done in vacuum!)
- Interaction of hadron h with medium. (Glauber)

# Fragmentation functions: NJL-jet model

We calculated the fragmentation functions  $D_q^h(z)$  in vacuum, including multifragmentation process. ( $\Leftrightarrow$  Product ansatz of Field and Feynman.)

For the case of pion channel only:

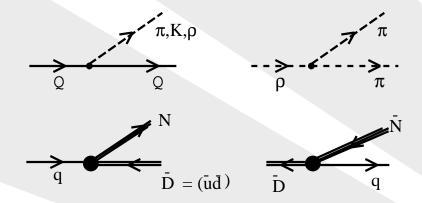
$$D_q^{\pi}(z) = \sum_{k=1}^{N} P(k) \int_0^1 d\eta_1 \dots \int_0^1 d\eta_k F(\eta_1) \dots F(\eta_k) \left( \sum_{m=1}^k \delta(z - z_m) \right)$$

$$D_q^{\pi}(z) = \sum_{k=1}^N P(k) \left( \sum_{m=1}^k \frac{\lambda_m}{W_0} \underbrace{\lambda_m}{W_1} \underbrace{\lambda_m}{W_{m-1}} \underbrace{\lambda_m}{W_m} \underbrace{\lambda_m}{W_k} \right)$$

- N... Maximum number of produced pions
- P(k)... Probability that k pions are produced. (For  $N \to \infty$ , P(k) becomes a **normal distribution**.)
- $F(\eta)$ ... Probability that momentum fraction  $\eta$  (of incoming quark) is left to outgoing quark, in each elementary step.
- For  $N \to \infty$ , 100% of quark momentum is converted to pions. (The limit  $N \to \infty$  corresponds to the Bjorken (infinite energy) limit.)

# More about NJL-jet

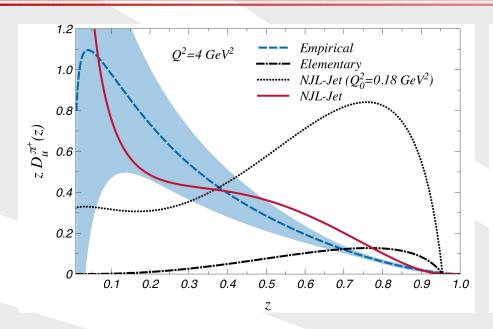
• **Generalization**: Fragmentation to <u>other hadrons</u> (K, N) included via the elementary splitting functions:

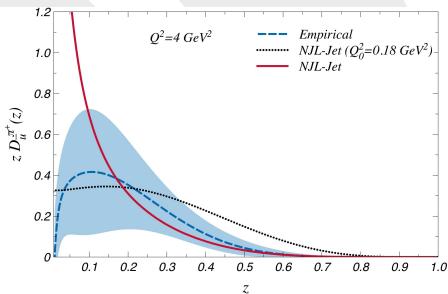


Here Q = (u, d, s), q = (u, d).

**Nucleon** described as bound state of **scalar diquark** (D) and quark (q).

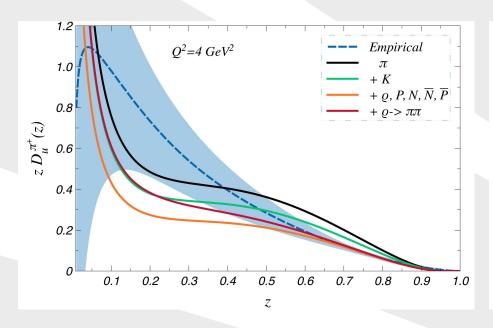
# Fragmentation to pions: $\pi$ channel only

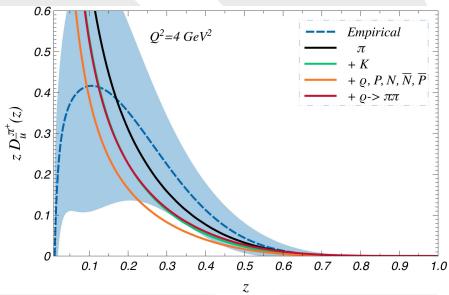




- Cascade-like processes enhance the fragmentation functions tremendously!
- Low energy (NJL) scale  $Q_0^2=0.18~{\rm GeV^2}$  determined by reproducing empirical **distribution** functions.
- Evolution to  $Q^2 = 4 \text{ GeV}^2$  in NLO performed using **QCDNUM-17** (M. Botje et al, 2010).
- Empirical NLO parametrizations and uncertainties from M. Hirai et al (PR D 75 (2007) 094009).

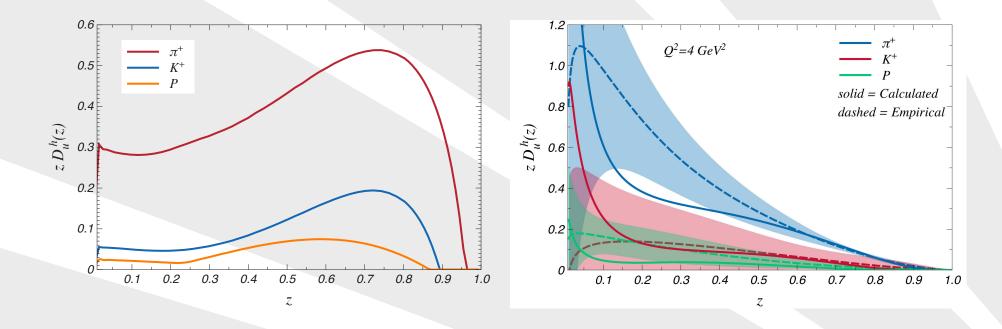
# Fragmentation to pions, incl. other channels





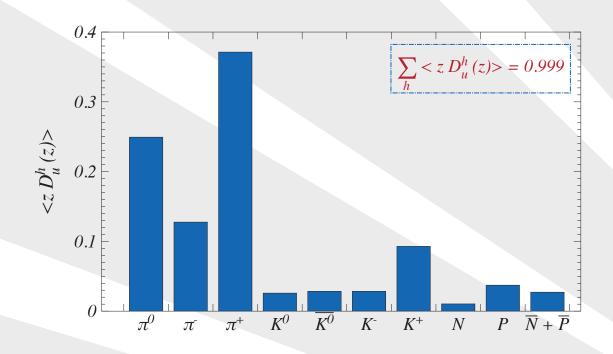
- Inclusion of other channels makes the pion momentum softer.
- Inclusion of  $\rho \to \pi\pi$  gives back part of the strength.

# **Fragmentation** $u \to \pi, K, N$



- Left figure: NJL model scale ( $Q_0^2$  = 0.18 GeV<sup>2</sup>).
- Right figure: Evolved to  $Q^2$ =4 GeV<sup>2</sup> using QCDNUM-17, empirical curves with uncertainties from M. Hirai et al.

# Momentum sum for u quark



- Momentum of u quark goes largely to  $\pi$ , followed by K.
- In this NJL calculation, we used the **invariant mass cut-off** (Lepage and Brodsky). We fixed  $M_u=M_d=300$  MeV, and fitted  $M_s=537$  MeV to  $m_K$ .

# **Summary**

- Medium modifications at the quark level can explain the EMC effect.
- Isovector EMC effect has impact on NuTeV analysis and spin asymmetry in parity violating DIS.
- In the medium, part of quark spin is converted to orbital angular momentum, which leads to the polarized EMC effect.
- The recently developed NJL-jet model qualitatively describes the empirical fragmentation functions for SIDIS in vacuum.
- Very interesting project: SIDIS for nuclear targets!!

## References used for NLO evolution

- Unpolarized distributions: M. Miyama, S. Kumano, Comput. Phys. Commun. 94 (1996) 185.
- Polarized distributions: M. Hirai, S. Kumano, M. Miyama, Comput.
   Phys. Commun. 108 (1998) 38.
- Unpolarized fragmentations: M. Botje (QCDNUM), Comput. Phys. Commun. 182 (2011) 490.

### Role of nuclear vector field

Role of the <u>mean vector field</u>  $V_q$  acting on quark q=u,d: The following rescaling relation holds:

$$q_A(x) = \frac{M_A}{M_{A0}} q_{A0} \left( x_0 = \frac{M_A}{M_{A0}} x - \frac{V_q}{M_{A0}} \right),$$

where  $M_A =$  mass per nucleon, and '0' means: 'without vector field'.

The can be understood from the relations

$$x=rac{k}{M_A}\,, \quad x_0=rac{k_0}{M_{A0}}=rac{k-V_q}{M_{A0}}=xrac{M_A}{M_{A0}}-rac{V_q}{M_{A0}}.$$
 (Here  $k\equiv k^+\cdot\sqrt{2},\,k_0\equiv k_0^+\cdot\sqrt{2}.$ )

Isovector corrections to  $M_A$  or  $M_{A0}$  are  $\propto \left(\frac{N-Z}{A}\right)^2$ , but those to  $V_q$  are  $\propto \mp \frac{N-Z}{A}$  (for q=u,d).

- $\Rightarrow$  If neutron excess increases: Shift to left (from  $M_A/M_{A0}>1$ , important for large x, same for u,d) does not change much,
- but shift to right (from  $V_q$ ) becomes weaker for u and stronger for d.
- $\Rightarrow$  Cancellation of shifts for the d quark at large x, Increasing left-shift for the u quark at large x.

# Simple estimate of the isospin dependence

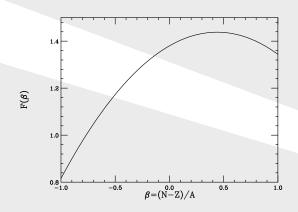
#### Isospin dependence of EMC effect:

• Assume: EMC effect  $\infty$  binding energy of quarks  $(E_u, E_d)$  weighted by their numbers and squared charges:

$$F(\beta) \equiv \text{const} \times (4N_uE_u + N_dE_d)$$
, where  $\beta = (N - Z)/A$ .

• Use  $E_q = M_0 - \mu_q$ , where  $M_0 = 400$  MeV, and the chemical potentials follow from energy density as:

$$\mu_{d(u)}=rac{1}{3}\overline{M}_N\pm 2eta a_4$$
, where  $\overline{M}_N=(940-15)$  MeV,  $a_4=30$  MeV.



Note: Maximum at  $\beta = 0.44$  ( Z/N = 0.4).