Hydrodynamic fluctuations of chiral matter

Noriyuki Sogabe (IMP & KEK), Yi Yin (IMP), and Naoki Yamamoto (Keio University)

We study the effects of hydrodynamic fluctuations on the chiral transport properties using newly-development non-equilibrium effective field theory. We show that the hydrodynamic fluctuation leads to a finite correction to the static vector conductivity. This correction is a generalization of the long-time tail in the presence of an emergent IR scale due to the finite axial relaxation rate or external magnetic field.

Introduction

- Chiral Matter
 - QGP, Electroweak plasma, Weyl semimetals, Core-collapse supernovae
 - Novel transport phenomena, e.g., Chiral Magnetic Effect (CME) [1]
- Hydrodynamic fluctuation effects
 - Long-time tail phenomena [2]
 - Renormalization of transport coefficients

[1] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, PRD ('08)[2] Y. Pomeau and P. Resibois, Physics Reports (1975)

Short summary

- Hydrodynamic fluctuation effects of chiral matter
- Universal one-loop formula of conductivity

 $\frac{(\text{Hydrodynamic fluctuation})}{(\text{Bare conductivity})} = \mathcal{N}(gTu)^2 q_*^3$

- $g^{-2} = \chi T = \langle \Delta n^2 \rangle$: Equilibrium fluctuation
 - *u*: Nonlinear couplings
 - $q_* \ll l_{\mathrm{mfp}}^{-1}$: IR emergent scale
 - Axial damping rate: q_{*r}
 - Magnetic field: q_{*B}
- C.f., Long time tail: $q_{*\omega}$

Setup and formulation

- Long-range and long-time behavior of chiral matter under ${\it B}$
- Slow variables: $n_{\rm V}$, $n_{\rm A}$
- Slow relaxation rate of the axial charge: $r \ll \tau_{\rm mic}^{-1}$
- Non-equilibrium effective field theory [3]
- Symmetries (full and approximate):
 - U(1) $_{V}$ and approx. U(1) $_{A}$
 - Dynamical KMS symmetry
 - CPT symmetry

[3] M. Crossley, P. Glorioso, and H. Liu ('17)

Effective Field Theory Approach

- Lagrangian
 - $\begin{aligned} \mathscr{L} &= \sum_{\alpha} (\partial_t \psi_{\alpha}) (\delta n_{\alpha}) \sum_{\alpha} D_{\alpha} \left[(\nabla \psi_{\alpha}) \cdot \nabla \delta n_{\alpha} i (\nabla \psi_{\alpha})^2 \right] \\ &+ v_{\mathrm{A}} \cdot (\nabla \psi_{\mathrm{V}}) \delta n_{\mathrm{A}} + v_{\mathrm{V}} \cdot (\nabla \psi_{\mathrm{A}}) \delta n_{\mathrm{V}} r \left[\psi_{\mathrm{A}} \delta n_{\mathrm{A}} i (\psi_{\mathrm{A}})^2 \right] \end{aligned}$
 - $D_{\alpha}, r, v_{\alpha}$: Expanded with respect to $\langle n_{\alpha} \rangle_{eq}, \delta n_{\alpha}$

Dyson equation:

$$D = \frac{\sigma}{\chi}, \quad v = \frac{C|B|}{\chi}, \quad \text{for both } \alpha = V, A \text{ at equilibrium}$$

- Anomaly matching in Schwinger Keldysh formalism [4]

• Green functions:
$$G_{\alpha\beta}^{\rm rr} = \left\langle \delta n_{\alpha}(x) \delta n_{\beta}(0) \right\rangle$$
, $G_{\alpha\beta}^{\rm ra} = \left\langle \delta n_{\alpha}(x) \psi_{\beta}(0) \right\rangle$

$$\sigma_{V\perp}(\omega) = \sigma_{V} + \Delta \sigma_{V\perp}(\omega)$$

$$\sigma_{V\parallel}(\omega) = \Delta \sigma_{V\parallel}(\omega) + \frac{v_{\text{ren}}^{2}(\omega)\chi}{r_{\text{ren}}(\omega)}$$

[4] P. Glorioso, H. Liu, and S. Rajagopal ('19)

Results

• Parameter sets: (I)
$$\langle n_{\rm V} \rangle_{\rm eq} \neq 0$$
, $\langle n_{\rm A} \rangle_{\rm eq} = 0$, $r \neq 0$
(II) $\langle n_{\rm V} \rangle_{\rm eq} = 0$, $\langle n_{\rm A} \rangle_{\rm eq} \neq 0$, $r = 0$

(I) Vector charge background with axial relaxation

$$\sigma_{\text{V}\parallel}(0) = \frac{v^2 \chi}{r} \left[1 - \frac{g^2 T^2 \left(2u_n^2 + u_r^2 \right) q_{*r}^3}{8\sqrt{2}\pi} \right]$$
$$q_{*r} = \sqrt{\frac{r}{D}}, \quad u_n = \frac{1}{\chi} \frac{\partial n}{\partial \mu \partial \mu}, \quad u_\gamma = \frac{1}{r} \frac{\partial r}{\partial \mu}$$
Finite at $\langle n_{\text{V}} \rangle \neq 0$

• C.f., Long-time tail phenomenon (two conserved charges without anomaly)

$$\sigma_{\rm LTT}(\omega) = \sigma \left(1 + \frac{g^2 T^2 u_\sigma^2 q_{*\omega}^3}{32\pi} \right) , \qquad q_{*\omega} = \sqrt{\frac{\omega}{D}}$$

Correspondence to [5] up to overall sign (See "Discussion")

• Origin of q_{*s} : Poles of the hydrodynamic-loop integrals:

$$\int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \frac{1}{\omega + \mathrm{i}r + 2\mathrm{i}D\boldsymbol{q}^2}, \quad \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \frac{D\boldsymbol{q}^2 q_i q_j}{2[(D\boldsymbol{q}^2)^2 + (\boldsymbol{v} \cdot \boldsymbol{q})^2]} \longrightarrow \begin{array}{l} \text{Finite cutoff-indep.} \\ \text{corrections} \end{array}$$

(II) Axial charge background without relaxation effects

Chiral magnetic wave [6,7] (Valid at $q_* \ll l_{
m mfp}^{-1}$)

Discussion: Ward-Takahashi identity and multiplicative noises

$$\boldsymbol{j}_{\mathrm{V}}^{\mathrm{a}} = \partial_{t} \left(\sigma_{\mathrm{V}} \nabla \psi_{\mathrm{V}} + C \psi_{\mathrm{A}} \boldsymbol{B} \right) + C \nabla \times \left(\mu_{\mathrm{A}} \nabla \psi_{\mathrm{V}} + \mu_{\mathrm{V}} \nabla \psi_{\mathrm{A}} + \boldsymbol{E} \psi_{\mathrm{A}} \right)$$

(#) Breaks down if $\sigma_V(\delta n)$ is not taken into account at 3 places consistently

[5] P. Kovtun (2015), [6] G. M. Newman ('06), [7] D. E. Kharzeev and H. U. Yee ('11) [8] J. Chao and T. Schäfer ('21)