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➢ We theoretically proposed a 

novel method, which is 

called a many-body Wannier

functions method (MBWFs), 

to calculate optical 

conductivity spectra 𝜎 𝜔 in 

strongly correlated electron 

systems and applied the 

method to a 1D extended 

Hubbard model at 1/2-filling. 

➢ Calculated 𝜎 𝜔 at 0 K is 

in good agreement with 

corresponding tDMRG

results. 

Hamiltonian (extended Hubbard model) and optical conductivity

𝑁 sites, one-dimension (1D), PBC, 1/2-filling (𝑁↑ = 𝑁↓ = 𝑁/2), total momentum=0
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Charge current operator: Optical conductivity (peak energies: 𝜔 = 𝜔𝜇 (𝜇 = 1,2,⋯ )): 
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・Ground state energy and the state: 𝐸𝑔, ۧ|𝑔

・Photoexcited states at the peaks of 𝜎 𝜔 , 

| ൿ𝜙𝜇 , are calculated by solving correction vectors 

(artificial broadening=10−4)

・Assume spin-charge separation

・Parameter values: 𝑈 = 10𝑇, 𝑉 = 0, 𝛾 = 0.1𝑇

(1) Exact diagonalization (e.g. N=16, V=0)

Precise theoretical method Our novel method

exact diagonalization DMRG / DDMRG
many-body Wannier

functions method (MBWFs)

N (1D calculatable size) N ≲ 20 N ≲ 1000 N ≲ 1000

Extracting physical 

properties from wave 

functions (state vectors)

easy hard easy

Formulation

ℏ = 𝑐 = 𝑒 = 1, lattice constant=1, 0 K

S. Ohmura, et al., PRB 100, 235134 (2019).
T. Yamaguchi, et al., PRB 103, 045124 (2021).

(2) Produce MBWFs by unitary transformation

(3) Extrapolation and size extension

Details of application of MBWFs to optical conductivity

This method can be extended to 

perturbatively include finite long-

range Coulomb terms, see:  
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1 ≤ 𝑟 ≤ 𝐼 ≔ 𝑁/2 − 1

The number of the main peaks are 

corresponding to localized quantity, 

𝑟 (holon-doublon (HD) distance of 

a single HD pair)
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Extrapolate in the direction to 

increasing r and achieve size extension
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Expectation value of መ𝐽 in MBWFs Effective Hamiltonian of photoexcited states in MBWFs
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Consider size

extension with 

hepta-diagonal 

elements
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Methods for understanding photoexcited states in strongly correlated electron systems
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