Theoretical analysis for photoexcited states of a 1D 1/2-filled Hubbard model by many-body Wannier functions method IMSS Tokitake Yamaguchi, Kaoru Iwano, KEK IMSS Background Conclusion > We theoretically proposed a Methods for understanding photoexcited states in strongly correlated electron systems novel method, which is

	Precise theoretical method		Our novel method
	exact diagonalization	DMRG / DDMRG	many-body Wannier functions method (MBWFs)
N (1D calculatable size)	$N \lesssim 20$	$N \lesssim 1000$	<i>N</i> ≲ 1000
Extracting physical properties from wave	easy	hard	easy

called a many-body Wannier functions method (MBWFs), to calculate optical conductivity spectra $\sigma(\omega)$ in strongly correlated electron systems and applied the method to a 1D extended

Formulation

Hamiltonian (extended Hubbard model) and optical conductivity $\hbar = c = e = 1$, lattice constant=1, 0 K

N sites, one-dimension (1D), PBC, 1/2-filling ($N_{\uparrow} = N_{\downarrow} = N/2$), total momentum=0

$$H = -T \sum_{j=1}^{N} \sum_{\sigma} \left[c_{j+1,\sigma}^{\dagger} c_{j,\sigma} + c_{j,\sigma}^{\dagger} c_{j+1,\sigma} \right] + U \sum_{j=1}^{N} n_{j,\uparrow} n_{j,\downarrow}$$

Charge current operator:

$$\hat{J} = iT \sum_{j=1}^{N} \sum_{\sigma} \left[c_{j+1,\sigma}^{\dagger} c_{j,\sigma} - c_{j,\sigma}^{\dagger} c_{j+1,\sigma} \right]$$

Optical conductivity (peak energies: $\omega = \omega_{\mu} (\mu = 1, 2, \cdots)$):

$$\sigma(\omega) = -\frac{1}{N\omega} \operatorname{Im} \langle g | \hat{J} \frac{1}{\omega + i\gamma + E_g - H} \hat{J} | g \rangle$$

Details of application of MBWFs to optical conductivity

(1) Exact diagonalization (e.g. N=16, V=0)

Hubbard model at 1/2-filling.

 \succ Calculated $\sigma(\omega)$ at 0 K is in good agreement with corresponding tDMRG results.

• Ground state energy and the state: E_g , $|g\rangle$ • Photoexcited states at the peaks of $\sigma(\omega)$, $|\phi_{\mu}\rangle$, are calculated by solving correction vectors (artificial broadening= 10^{-4})

Assume spin-charge separation

• Parameter values: $U = 10T, V = 0, \gamma = 0.1T$

Results

