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Motivations
It is important to determine phase structures of QFTs

• Related to symmetry, renormalization grp, energy gap, topological order,…

Description by resurgence theory

• One of the approaches to non-perturbative physics

• Decoding non-perturbative information from perturbation theory
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Lefschetz thimble analysis
Decomposition of path integral contour to Lefschetz thimbles

Changes of contributions to path integral

Introduction (2/6) 2/13

[E. Witten, 11]

[M. Cristoforetti et al., 12,13,14]

[H. Fujii et al., 13]

[G. Aarts, 13]

[A. Alexandru et al, 16]

Stokes pheno.：

Anti-Stokes pheno.：

Discrete jump of

Jump of 

1st order phase transition



Borel resummation
Resuming a non-convergent formal series

Borel transformation may have Borel singularities

Introduction (3/6)

Borel resummation

Borel transformation

Formal series

Borel singularities are associated with saddles
[Lipatov, 77]
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[J. Ecalle, 81]

Lectures and reviews, e.g.

[M. Marino, 12]

[D. Dorigoni, 19]

[I. Aniceto, G. Basar, R. Schiappa, 19]



Resurgence
Conjecture：”Ambiguities” cancel each other in QFTs

We can decode information of non-perturbative effects 
from perturbation theory

Introduction (4/6)

Borel resummation

”Ambiguity”

of part. func.
4/13

Lefschetz thimble analysis

”Ambiguity”

of part. func.

[J. Ecalle, 81]

Lectures and reviews, e.g.

[M. Marino, 12]

[D. Dorigoni, 19]
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Resurgence
Scenario

Applications to phase transitions

• (Generically) 1st order phase transition is an Anti-Stokes phenomenon

• 0次元Gross-Neveu, Nambu-Jona-Lasinio like model

• Massive fermion + Chern-Simons

• 2dim Yang-Mills on lattice (reduced to Gross-Witten-Wadia)

Introduction (5/6) 5/13

[T. Kanazawa, Y. Tanizaki, 15]

[G. Dunne et al., 16, 17, 18]

[T. Kanazawa, Y. Tanizaki, 15]

etc.

Is resurgence applicable to

2nd order phase transitions or more realistic QFTs?

Perturbation theory

Borel resummation
”Ambiguity” by Borel singularities

Non-perturbative effects
e.g. phase transitions

Lefschetz thimble analysis
”Ambiguity” by Stokes phenomena

Resurgence

structure

Cancellation of

“Ambiguities”



Outline of our work
Model

• 3d N=4 U(1) SUSY gauge theory + 2N hypermultiplets (charge 1)

• Fayet-Illiopoulos parameter 𝜂, flavor mass m

Result: resurgence is applicable!

• Lefschetz thimble analysis

o Two phases are distinguished by Stokes phenomena

o The order of the phase transition is determined by ”a collision of saddles.”

• Borel resummation

o Two phases are distinguished by Stokes phenomena

o The order of the phase transition is determined by ”a collision of Borel singularities.”

Introduction (6/6)

[Russo, Tierz, 17]

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

2nd order quantum phase transition at the large-flavor limit

6/13

 2nd order phase trans. is the simultaneous Stokes and anti-Stokes pheno.

 The order of phase transitions can be decoded from a perturbative series

 Generalized to other systems

TAKE-HOME 
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3dim SQED and quantum phase transition
• Setup

• Exact expression for the part. func. on 𝑆3 (by SUSY localization technique)

• 2nd order quantum phase transition at the ’t Hooft like limit (𝜆 =fix. 𝑁 → ∞)

Lefschetz thimble analysis (1/4)

Model:

Parameters:

3d N=4 U(1) SUSY gauge +2N hypermultiplets(charge1)

Fayet-Illiopoulos parameter 𝜂, flavor mass m

’t Hooft like parameter: 𝜆 = 𝜂/𝑁

[Russo, Tierz, 17]

[Pestun, 12]

[A. Kapustin, B. Willett, I. Yaakov, 10]

[N. Hama, K. Hosomichi, S. Lee, 11]

[D. L. Jafferis, 12]

[Russo, Tierz, 17]
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Lefschetz thimble structure
Brief summary

Discrete jump of the intersection numbers

Single trivial saddle

No Stokes phenomenon

Infinite number of saddles

(Two of them survive the large-flavor limit)

Infinite number of Stokes phenomena

𝜆 < 𝜆𝑐
arg𝑁 = 0, 𝜆 = 0.4,𝑚 = 1

𝜆 ≥ 𝜆𝑐
arg𝑁 = 0, 𝜆 = 1.2,𝑚 = 1

branch cut

thimble

thimble

Trivial saddle

8/13

𝜆 < 𝜆𝑐 𝜆 ≥ 𝜆𝑐

Lefschetz thimble analysis (2/4)

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]
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[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]



Lefschetz thimble structure
No Stokes phenomenon for 𝜆 < 𝜆𝑐

Infinite number of Stokes phenomena for 𝜆 > 𝜆𝑐

arg 𝑁 = −0.025, 𝜆 = 0.4,𝑚 = 1 arg𝑁 = +0.025, 𝜆 = 0.4,𝑚 = 1

arg𝑁 = −0.025, 𝜆 = 1.2,𝑚 = 1 arg𝑁 = −0.015, 𝜆 = 1.2,𝑚 = 1 arg𝑁 = +0.015, 𝜆 = 1.2,𝑚 = 1

・・・

9/13Lefschetz thimble analysis (3/4)
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The order of phase transitions is determined
by the scattering angle of collided saddles

Particularly 𝑛 = 2, 𝛼 = Τ1 2, then 2nd order phase transition

The order of phase trans. and collision of saddles

10/13

𝛽𝜋

𝜆 < 𝜆𝑐 𝜆 ≥ 𝜆𝑐

Stokes pheno.

Lefschetz thimble analysis (4/4)

-th order phase transition
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Large-flavor expansion and Borel resummation

Decoding information of other saddles and the phase transition 
from expansion around the trivial saddle

𝜆 < 𝜆𝑐 𝜆 ≥ 𝜆𝑐

11/13Borel resummation (1/2)

Formal expansion

Borel resummation

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]



Borel resummation
Lefschetz thimble structure is encoded in Borel plane structure

12/13

𝜆 < 𝜆𝑐
𝜆 = 0.4,𝑚 = 1, Padé-Uniformized (25,25)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.2,𝑚 = 1, Padé-Uniformized (25,25)
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Borel resummation
Lefschetz thimble structure is encoded in Borel plane structure
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𝜆 < 𝜆𝑐
𝜆 = 0.4,𝑚 = 1, Padé-Uniformized (25,25)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.2,𝑚 = 1, Padé-Uniformized (25,25)

Borel resummation (2/2)

• Collision of saddles correspond to

collision of Borel singularities

• An anti-Stokes pheno. occurs
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Conclusion and future works
• Resurgence is an approach to non-perturbative physics from perturbation theory

• Q: Is resurgence applicable to 2nd order phase transitions or more realistic QFTs?

A: resurgence is applicable!

• Lefschetz thimble analysis

o Two phases are distinguished by Stokes pheno.

o The order of the phase transition is determined by ”a collision of saddles.”

• Borel resummation

o Two phases are distinguished by Stokes pheno.

o The order of the phase transition is determined by ”a collision of Borel singularities.”

• Relation to Lee-Yang zeros？

• Expansion with respect to other parameters？

• Physical meaning of the phase transition？

13/13Conclusion and future works (1/1)

 2nd order phase trans. is the simultaneous Stokes and anti-Stokes pheno.

 The order of phase transitions can be decoded from a perturbative series

 Generalized to other systems
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Borel transformation and Padé approximation

Search Borel singularities by the Padé approximation

The Padé approximation is improved by a uniformization map

3dim SQED Borel plane structure (2/5)

Typically, the Padé approximation becomes worse outside the closest singularity

The closest singularity is sent to ∞

28/38

[Costin, Dunne, 20]



Borel singularities
• The Borel plane structure is consistent with the Lefschetz thimble structure

• Still there are artifacts, and missing singularities far from the origin

3dim SQED Borel plane structure (3/5)

𝜆 < 𝜆𝑐
𝜆 = 0.4,𝑚 = 1, Padé (25,25)

𝜆 < 𝜆𝑐
𝜆 = 0.4,𝑚 = 1, Padé-Uniformized (25,25)
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↔ NO stokes pheno.



Borel singularities
• The Borel plane structure is consistent with the Lefschetz thimble structure

• Still there are artifacts, and missing singularities far from the origin

3dim SQED Borel plane structure (4/5)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.4,𝑚 = 1, Padé (25,25)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.2,𝑚 = 1, Padé-Uniformized (25,25)
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Borel singularities
• The Borel plane structure is consistent with the Lefschetz thimble structure

• Still there are artifacts, and missing singularities far from the origin

3dim SQED Borel plane structure (4/5)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.4,𝑚 = 1, Padé (25,25)

𝜆 ≥ 𝜆𝑐
𝜆 = 1.2,𝑚 = 1, Padé-Uniformized (25,25)
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The order of the phase transition
2nd order phase transition corresponds to

3dim SQED Borel plane structure (5/5)

collision of two saddles with the reflection angle Τ𝜋 2
𝜆 < 𝜆𝑐

𝜆 = 0.4,𝑚 = 1, Padé-Uniformized (25,25)
𝜆 ≥ 𝜆𝑐

𝜆 = 1.2,𝑚 = 1, Padé-Uniformized (25,25)

33/38



Lefschetz thimble analysis

34/38Resurgence in a toy model (1/8)



Lefschetz thimble analysis
0dim Sine-Gordon model

Saddles and Lefschetz thimbles

Resurgence in a toy model (2/8)

Trivial saddle and non-trivial saddles

[Cherman, Dorigoni, Unsal, 14]

[Cherman, Koroteev, Unsal, 14]

35/38



Lefschetz thimble analysis
Around arg 𝑔 = 0,

Stokes phenomenon associated with the trivial saddle

NO Stokes phenomenon associated with the non-trivial saddles

Resurgence in a toy model (3/8)

[Cherman, Dorigoni, Unsal, 14]

[Cherman, Koroteev, Unsal, 14]
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Borel resummation

Resurgence in a toy model (4/8) 37/38



Borel resummation
Perturbation theory around the trivial saddle diverges

There is a Borel singularity (and a branch cut) around arg 𝑔 = 0

Resurgence in a toy model (5/8)

[Cherman, Dorigoni, Unsal, 14]

[Cherman, Koroteev, Unsal, 14]
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Perturbation theory around a non-trivial saddle diverges

There is NO Borel singularity (nor branch cut) around arg 𝑔 = 0

Borel resummation

Resurgence in a toy model (6/8)

[Cherman, Dorigoni, Unsal, 14]

[Cherman, Koroteev, Unsal, 14]
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Resurgence

Resurgence in a toy model (7/8) 40/38



Resurgence structure
The two types of ambiguities cancel

and the location of the Borel singularity agrees with 𝑆
𝜋

2
= 1/2

Resurgence in a toy model (8/8)

Information of non-trivial saddles is

encoded in perturbation theory around the trivial saddle

[Cherman, Dorigoni, Unsal, 14]

[Cherman, Koroteev, Unsal, 14]
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