量子連続制御下の情報熱力学

沙川 貴大 東京大学大学院 工学系研究科

2023年2月16日 KEK素核研・物構研連携研究会

統計力学

情報熱力学

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Information thermodynamics

Information processing at the level of thermal fluctuations

- ✓ Foundation of the second law of thermodynamics
- ✓ Application to nanomachines and nanodevices

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Szilard engine (1929)

L. Szilard, Z. Phys. 53, 840 (1929)

Experimental realizations

• With a colloidal particle Toyabe, TS, Ueda, Muneyuki, & Sano, Nature Physics (2010)

Efficiency: 30%

Validation of $\left\langle e^{-\beta(W-\Delta F)} \right\rangle = \gamma$

• With a single electron Koski, Maisi, TS, & Pekola, PRL (2014)

Efficiency: 75%
Validation of
$$\left\langle e^{-\beta(W-\Delta F)-I} \right\rangle = 1$$

A. Transient unfolding 3. Work extraction

Ribezzi-Crivellari & Ritort, Nature Phys. (2019)

Single electron

Chida et al., Nature Commu. (2017)

Nanomagnet

Hong et al., Science Adv. (2016)

and more...

Superconducting qubit

Masuyama et al., Nat. Commu. (2018) Cottet et al., PNAS (2017) Naghiloo et al., PRL (2018)

Second law under various feedback setups

The generalized SL: $\langle \sigma \rangle \ge -\langle i \rangle$ The generalized FT: $\langle e^{-\sigma-i} \rangle = 1$

i : Information obtained by measurement

T. Yada, N. Yoshioka, and T. Sagawa, Phys. Rev. Lett. **128**, 170601 (2022)

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Mutual information

$I(S:M) \equiv H(S) + H(M) - H(SM)$

Shannon information $H = -\sum_{k} p_{k} \ln p_{k}$

Correlation between S and M

Generalized second law with feedback

The upper bound of the work extracted by the demon is bounded by the mutual information.

The equality is achieved in the thermodynamically reversible limit

Generalized Jarzynski equality

With feedback control

$$\left\langle e^{-\beta(W-\Delta F)-I}\right\rangle = 1$$

TS and M. Ueda, PRL 104, 090602 (2010)

Stochastic mutual information:

$$I(x:y) = \ln \frac{P(x,y)}{P(x)P(y)}$$

Mutual information:

$$\langle I \rangle = \sum_{xy} P(x, y) \ln \frac{P(x, y)}{P(x)P(y)}$$

Reproduce the generalized second law:

$$-W_{\rm ext} = \langle W \rangle \ge \Delta F - k_{\rm B} T \langle I \rangle$$

Entropy production

Seifert, PRL (2005)

Generalized fluctuation theorem

Reproduce the generalized second law:

 $\langle \sigma \rangle \ge -\langle i \rangle \qquad \langle i \rangle = I$

Two approaches to *continuous* information flow

• "Transfer entropy" approach

- ✓ Applicable to non-Markovian dynamics
- \checkmark Second law is weaker in Markovian dynamics

Sagawa & Ueda, Phys. Rev. E (2012) Ito & Sagawa, Phys. Rev. Lett. (2013)

"Information flow" approach

- \checkmark Not applicable to non-Markovian dynamics
- \checkmark Second law is stronger in Markovian dynamics

Horowitz & Esposito, Phys. Rev. X (2014) Shiraishi & Sagawa, Phys. Rev. E (2015)

Transfer entropy

Directional information transfer between two systems

Transfer entropy:

1

Directional information transfer from X to Y during time t and t + dt

Conditional mutual information

$$\dot{T}_{X \to Y} \equiv \frac{1}{dt} I \left(X_t : Y_{t+dt} \mid Y_t \right)$$
$$\equiv \frac{1}{dt} \sum_{x_t y_t y_{t+dt}} P(x_t, y_t, y_{t+dt}) \ln \frac{P(x_t, y_{t+dt} \mid y_t)}{P(x_t \mid y_t) P(y_{t+dt} \mid y_t)}$$
$$\ge 0$$

T. Schreiber, PRL 85, 461 (2000)

Fluctuation theorem with transfer entropy

Stochastic transfer entropy

$$\dot{\tau}_{X \to Y} \equiv \frac{1}{dt} \ln \frac{p(x_t, y_{t+dt} \mid y_t)}{p(x_t \mid y_t) p(y_{t+dt} \mid y_t)} \qquad \dot{T}_{X \to Y} = \left\langle \dot{\tau}_{X \to Y} \right\rangle$$

S. Ito & T. Sagawa, PRL **111**, 180603 (2013).

Application to biochemical signal transduction: S. Ito & T. Sagawa, Nat. Commu. **6**, 7498 (2015)

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Quantum thermodynamics

Various experimental platforms for quantum thermodynamics

Thermodynamics with quantum measurement and feedback?

QC-mutual information

Information flow from **Q**uantum system to **C**lassical outcome by quantum measurement

$$I_{\rm QC} \equiv S(\rho) - \sum_{k} p_k S(\rho_k)$$

 $\rho : \text{measured density operator}$ $p_k = \text{tr}[\rho M_k^{\dagger} M_k] : \text{probability of obtaining outcome } k$ $\rho_k = \frac{1}{p_k} M_k \rho M_k^{\dagger} : \text{post-measurement state with outcome } k$

H. J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971).
M. Ozawa, J. Math. Phys. 27, 759 (1986).
TS and M. Ueda, PRL 100, 080403 (2008).

Generalized second law with *quantum* feedback

The upper bound of the work extracted by the demon is bounded by the **QC-mutual information**.

Generalized Quantum Jarzynski Equality

Initial state:
$$\rho_{\text{ini}} = e^{\beta(F_{\text{ini}} - H_{\text{ini}})} = \sum_{i} e^{\beta(F_{\text{ini}} - E_{\text{ini}}^{i})} |\varphi_i\rangle\langle\varphi_i|$$

Let $p(i) := e^{\beta(F_{\text{ini}} - E_{\text{ini}}^{i})}$

For simplicity, suppose that the measurement is performed on ρ_{ini} with Kraus operators $\{M_k\}$

Post-measurement state with outcome k:
$$\rho_k = \frac{M_k \rho_{\text{ini}} M_k^{\dagger}}{p_k} = \sum_{i'} p(i'|k) |\varphi_{i'}^k\rangle \langle \varphi_{i'}^k |$$

Apply k-dependent unitary (feedback) U_k

Stochastic QC-mutual information: $i_{QC} \coloneqq \ln p(i'|k) - \ln p(i)$

The ensemble average equals the QC-mutual information: $\langle i_{QC} \rangle = I_{QC}$

Generalized quantum Jarzynski equality:

$$\langle e^{-\beta(W-\Delta F)-i_{\rm QC}} \rangle = 1$$

K. Funo, Y. Watanabe, & M. Ueda, PRE 88, 052121 (2013)

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Collaborators

Toshihiro Yada

Nobuyuki Yoshioka

T. Yada, N. Yoshioka, and T. Sagawa, Phys. Rev. Lett. **128**, 170601 (2022)

EDITORS' SUGGESTION

Quantum Fluctuation Theorem under Quantum Jumps with Continuous Measurement and Feedback

A generalized fluctuation theorem is derived for quantum systems undergoing continuous measurement and feedback.

Toshihiro Yada, Nobuyuki Yoshioka, and Takahiro Sagawa Phys. Rev. Lett. **128**, 170601 (2022)

What was missing?

The generalized SL: $\langle \sigma \rangle \ge -\langle i \rangle$ The generalized FT: $\langle e^{-\sigma-i} \rangle = 1$

i : Information obtained by measurement

T. Yada, N. Yoshioka, and T. Sagawa, Phys. Rev. Lett. **128**, 170601 (2022)

Quantum continuous feedback control

Prepare and stabilize desired quantum states.

Summary of our main results

T. Yada, N. Yoshioka, and T. Sagawa, Phys. Rev. Lett. 128, 170601 (2022)

The generalized FT $\left\langle e^{-\sigma-i_{\rm QC}} \right\rangle = 1$

$\langle i_{\rm QC} \rangle$: QC-transfer entropy

- Newly introduced
- Total information transfer by continuous measurement

Setup

Time discretization $t_n \equiv n \cdot \Delta t$

Take continuous time limit $\Delta t \rightarrow 0, \tau$ const.

Stochastic master equation

$$D_{t_{n+1}}^{Y_{n+1}} = \rho_{t_n}^{Y_n} + \Delta t \left\{ -i [H_{t_n} + h_{t_n}, \rho_{t_n}^{Y_n}] + \sum_d \mathcal{D}[L_d] \rho_{t_n}^{Y_n} - \sum_y -\frac{1}{2} \{ M_y^{\dagger} M_y, \rho_{t_n}^{Y_n} \} + \operatorname{Tr}[M_y \rho_{t_n}^{Y_n} M_y^{\dagger}] \rho_{t_n}^{Y_n} \right\} + \sum_y \Delta N_y \mathcal{G}[M_y] \rho_{t_n}^{Y_n}$$

$$\left\{ egin{array}{ll} \mathcal{D}[c]
ho\equiv c
ho c^{\dagger}-rac{1}{2}\{c^{\dagger}c,
ho\}, \ \mathcal{G}[c]
ho\equiv rac{c
ho c^{\dagger}}{\mathrm{Tr}[c
ho c^{\dagger}]}-
ho \end{array}
ight\}$$

Measurement outcome

 y_n : Measurement result at t_n Y_n : Result until t_n (i.e., $(y_1, y_2, ..., y_n)$)

Continuous feedback

Change Hamiltonian $H_{t_n} + h_{t_n}$ according to Y_n H_{t_n} : System Hamiltonian h_{t_n} : External driving

QC-transfer entropy

$$\langle i_{\rm QC} \rangle \equiv \sum_{n=0}^{N-1} \sum_{\underline{Y_n}} P[\underline{Y_n}] \mathcal{I}_{\rm QC}(\rho_{t_n}^{\underline{Y_n}}; y_{n+1})$$

 QC-mutual information quantifies the information obtained by the measurement in [t_n, t_{n+1})

$$\mathcal{I}_{\text{QC}}(\rho_{t_n}: y) \equiv S(\rho_{t_n}) - \sum_{y=1}^m p_y S(\rho_{t_{n+1}}^y)$$

 Conditioned on the past measurement outcomes Y_n

cf. transfer entropy $\langle i_{\text{TE}} \rangle \equiv \sum_{n=1}^{N} I(x_n, y_{n+1}|Y_n)$

Measurement & feedback System	Single	Continuous
Classical	mutual information	transfer entropy
Quantum	QC-mutual information	QC-transfer entropy

Conditional accumulation

Fine unraveling

Stochastic QC-transfer entropy: $i_{QC} \equiv \sum_{n=1}^{N} - \ln p^{Y_{n-1}}(b_n) + \ln p^{Y_n}(c_n)$

Experiment-numerics hybrid method

Verification of the generalized FT $\langle e^{-\sigma - i_{QC}} \rangle$ =1 in real experiments

★ Direct sampling of the fine trajectory

O Sample the standard trajectories & Perform auxiliary numerical calculation

Standard trajectory $\psi_{ au}$

Fine trajectory $(\boldsymbol{\psi}_{ au}, \boldsymbol{\pi}_{ au})$

Numerical demonstration

Generalized second law (GSL)

(Error bars are hidden by the plots.)

Outline

- Introduction
- Generalized second laws: Classical
- Generalized second laws: Quantum
- Main result: Continuous quantum feedback
- Summary and references

Summary

In quantum systems under continuous measurement and feedback, we have

- generalized the SL and FT
- introduced the QC-transfer entropy
- proposed the experiment-numerics hybrid method

$$\langle \sigma \rangle \geq -\langle i_{QC} \rangle \quad \langle e^{-\sigma - i_{QC}} \rangle = 1$$

$$\xrightarrow{\text{Measurement \&} \\ \text{System}} \quad \text{Single} \quad \text{Continuous} \quad \downarrow \\ \text{Classical} \quad \text{mutual information} \quad \downarrow \\ \text{Ruement and the second seco$$

T. Yada, N. Yoshioka, and T. Sagawa, Phys. Rev. Lett. 128, 170601 (2022)

References

Main result of this talk:

T. Yada, N. Yoshioka, T. Sagawa, Phys. Rev. Lett. 128, 170601 (2022). QC-transfer entropy

Backgrounds:

T. Sagawa and M. Ueda, Phys. Rev. Lett. 100, 080403 (2008). QC-mutual information
T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010). Classical mutual information
T. Sagawa and M. Ueda, Phys. Rev. E 85, 021104 (2012). Classical transfer entropy
S. Ito and T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013). Classical transfer entropy

Review:

J. M. R. Parrondo, J. M. Horowitz, T. Sagawa, Nature Physics **11**, 131-139 (2015). K. Funo, M. Ueda, T. Sagawa, arXiv:1803.04778, published in "Thermodynamics in the Quantum Regime" (2018).