

Experimental Seminar: Quark-Gluon Plasma

Form of the Universe, right after the Big bang, ~a few μ s, just before the nucleon synthesis

Yasuo MIAKE, Asian Winter School, 2012.1.11

グルーオン

クォーク

Experimental study using Relativistic Heavy Ion Collisions

Big Bang

KEK homepage

Yasuo MIAKE, Asian Winter School, 2012.1.11

Accelerator Facilities

RHIC(200GeV) since 2000

Vac d'ensemble des expériences LHC.

LHC(5.6TeV) 2009

- ✓ Instead of Big Bang, create QGP in an experiment using relativistic nucleusnucleus collisions, i.e. Little Bang
- ✓ How & what we prove/study the QGP, emerging connection with string theory, black hole thermodynamics....

First things first !

CAMBRIDGE Catalogue

Home > Catalogue > Quark-Gluon Plasma

Quark-Gluon Plasma

Buy at Amazon Series: Cambridge Monographs / Particle Physics, Nucle

Kohsuke Yagi Urawa University, Japan

Tetsuo Hatsuda University of Tokyo

Yasuo Miake University of Tsukuba, Japan

Hardback (ISBN-10: 0521561086 | ISBN-13: 97805215610

For price and ordering options, inspection copy requests, and rea UK, Europe, Middle East and Africa | Americas | Australia and Ne

- √Chapt. 1 What is Quark Gluon Plasma?
- ✓ Chapt. 2 How to create QGP?
- √Chapt. 3 What we learned at RHIC
 - Properties of Bulk matter
 - Azimuthal Anisotropy
 - Jet quench
- ✓ Chapt. 4 Results from LHC
- √Summary Remarks

What is Quark Gluon Plasma?

Primordial state of the matter; Quark Gluon Plasma

- ✓ Hadrons such as proton, neutron and mesons have a size of ~1 fm and are composed of quarks and gluons
 - Proton/Neutron; 3 quarks
 - Meson ; quark and anti-quark
 - Described by Quantum ChromoDynamics
 - Confinement of quarks and gluons in hadrons
 - ➡Asymptotic freedom
- ✓ What happen if we heat or compress the hadron gas?
 - Hadrons are overlapped each other and quarks and gluons start to move around in relatively large volume.

! Quark Gluon Plasma !

QGP phase transitionwith percolation theory

Toy Model

- Formation of long-range connectivity in random system
 - populate pions in 80x80 cells randomly
 - evaluate probability to form long-range connectivity (from top to bottom in this case)

Probability to form long-range connectivity

1st order phase transition ?!

QGP phase transition with Ideal Gas Model

QGP phase transitionwith Lattice QCD

Center for Computational Sciences, Univ. of Tsukuba

Hadron Mass

F. Karsch, Lect. Notes Phys. 583 (2002) 209.

✓ It can be 1st order phase transitions ε_c~ 0.6 - 1.2 GeV/fm³

How to create QGP

How to produce particles? How to obtain dense particle production?

Produce particles in pp collisions

 Particle (mostly pions) produced above the threshold
 At higher energy, more particle produced

$$\begin{array}{ccc}
\tilde{p}_{A} & \tilde{p}_{B} \\
s \equiv (\tilde{p}_{A} + \tilde{p}_{B})^{2}, & \tilde{p} \equiv (E, \vec{p}) \\
\tilde{p}_{A} = (\sqrt{p^{2} + m^{2}}, 0, 0, +p) \\
\tilde{p}_{B} = (\sqrt{p^{2} + m^{2}}, 0, 0, -p) \\
s = (2\sqrt{p^{2} + m^{2}})^{2} = (E_{cm})^{2}
\end{array}$$

Produced particles populated in cylindrical momentum space

Produced particles populated in momentum phase space, which is cylindrical with pt~300 MeV/c

➡Spaghetti

 \checkmark Higher the energy of collision, longer the cylinder, with almost the same radius

$$E\frac{d^3n}{dp^3} \simeq \frac{dn}{dy} \times \frac{1}{p_{\rm T}}\frac{d^2n}{dp_{\rm T}d\phi}$$

Rapidity y

$$y \equiv \frac{1}{2} \ln \frac{E + p_{\parallel}}{E - p_{\parallel}} \approx \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta} \longrightarrow \beta$$

dy; Lorentz inv.

 \checkmark (n) & (pt) increase very slowly with \checkmark s

Interpretation w. string picture

√Often called as soft component

Hard component, another type of particle production

$$E\frac{d^{3}\sigma}{dp^{3}} = C_{0}\exp(-\frac{m_{t}}{T_{0}}) + \frac{C_{1}}{(p_{t} + p_{0})^{n}}$$

At ISR in 1972, deviation from the mt scaling at high pt region is observed as a first time.

Sinary parton scattering followed by fragmentation produces backto-back jet.

 \checkmark Main source of high pt particles.

Please note very different mechanism

How to achieve dense particle production

✓ Higher the energy,
 more particle
 produced in pp
 ➡ Relativistic

Nucleus cluster of many nucleons in a small volume

Relativistic AA collisions achieve dense particle production

Simulation at 100 GeV AutAu collision

200 GeV Gold + Gold In-coming Lorentz contracted nucleus RHIC at BNL

Bjorken Picture

 At very high energy, nucleus penetrate each other, leaving ~particles behind
 If the density is high enough, QGP is there!

√QGP pulled apart at ~c

I dimensional expansion
 unlike the 3 dim. expansion
 of the Big Bang

Evaluation of Energy Density

Key 1; Time Evolution

√It is like Big Bang.

- The Table Time evolution in statistical nature
 - Parton cascade?
 followed by partonic
 thermalization (QGP)
 - Hadron production
 - Freezeout of v₂ ?
 - Chemical freeze-out
 - Kinematical freeze-out

Need consistent understanding of these epocs, in particular, aspects of statistical nature.

$$\epsilon_{\text{QGP}} \sim 2 [\text{GeV/fm}^3]$$

$$< n_{q,\bar{q}} > \sim \frac{\epsilon_{\text{QGP}}}{< m_T >} \sim \frac{2\text{GeV}}{1\text{GeV}} \sim 5$$

$$\lambda_q = \frac{1}{n\sigma_{qq}}$$

$$\sim \frac{1}{n\sigma_{qq}} = 0.2 \text{ [fm]}$$

$$\lambda_q \ll R_{\text{system}}$$

$$\therefore \sigma_{qq} \sim \frac{\sigma_{NN}}{n_q} \sim \frac{4[\text{fm}^2]}{3} \sim 1$$

$$\checkmark \text{What we expect,}$$

Ex. Lattice QCD

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Statistical physics at quark level

Hydrodynamical behavior at quark level

Relativistic Heavy Ion Collision

Identify track, measure momentum, identify particle species, distributions.... Yasuo MIAKE, Asian Winter School, 2012.1.11 22

 \checkmark Collision time \lt intrinsic time of nucleus

Clear separation of participant and spectator

✓ Size of participants determines the initial geometry (eccentricity later), the size of QGP and development of the system, it is very important to sort the data accordingly

Chemical Eq. from particle vield ratio

Blast Wave Model

x10.0

x5.0

10

0

Baryon Anomaly

In peripheral, p/π ratio at high pt similar to those in ee/pp suggesting fragmentaton process

- \checkmark In central col., p/ π ratio is very large, while.
 - Fragmentation process should show $n_p < n_{\pi}$ as seen in ee/pp.
- ✓ Suggesting other production mechanism.

Quark Recombination Model (Quark Coalescence Model)

Quark Coalescence explains Baryon Anomaly

✓ Quarks, anti-quarks combine to form mesons and baryons from universal quark distribution, w(pt).

Mom. distr. of baryon (3q); $W_{\rm B}(p_t) \approx C_B \cdot w^3 (\frac{p_t}{3})$

w(pt); Universal mom. distr. of quarks {*steep in pt*}

QGP

Hadron

Because of the steep distr. of *w(pt)*, *RECO* wins at high pt even w. small *Cx*.

Characteristic scaling features expected.
→Quark Number Scaling (QNS)

Azimuthal Anisotropy

 \checkmark In non-central collisions, participant region has almond shape.

azimuthal anisotropy in coordinate space

 \checkmark If λ KR, azimuthal anisotropy of the coordinate space is converted to that of the momentum space.

➡v2 ; second Fourier harmonics of azimuthal distribution

- ✓ Goodies :
 - Clear origin of the signal

$$N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) \}$$

Collision geometry can be determined experimentally

 $\sqrt{v_2}$ saturates in the early stage

Geometrical eccentricity disappears quickly

 \Rightarrow v₂ is sensitive to the early stage of the collisions

v2 of identified particle

Quark Coalescence also explains v2 behavior

Beautiful scalings of v2

Au+Au 200 GeV PHENIX PRL 98(2007)162301

- Systematic study with hydrodynamics
 - for various centralities, η/s & initial conditions

Further analysis of higher monics

3

Viscosity as low as the quantum bound

➡Perfect Fluid !

$$\eta/s \ge \frac{1}{4\pi} \sim 0.08$$

3 v₅⁻ 20-30% 0.2 PHENIX V₂ PHENIX V3 H PHENIX v_4 0.15 0.1 0.05 0 2.5 0 0.5 2 **3**7 1.5 1 n- [GeV]

internal resistance to flow

Low η

High η

VOLUME 87, NUMBER 8

PHYSICAL REVIEW LETTERS

20 August 2001

Shear Viscosity of Strongly Coupled $\mathcal{N} = 4$ Supersymmetric Yang-Mills Plasma

G. Policastro,^{1,2} D. T. Son,^{3,4} and A. O. Starinets¹

¹Department of Physics, New York University, New York, New York 10003 ²Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100, Pisa, Italy ³Physics Department, Columbia University, New York, New York 10027 ⁴RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (Received 14 April 2001; published 2 August 2001)

Using the anti-de Sitter/conformal field theory correspondence, we relate the shear viscosity η of the finite-temperature $\mathcal{N} = 4$ supersymmetric Yang-Mills theory in the large N, strong-coupling regime with the absorption cross section of low-energy gravitons by a near-extremal black three-brane. We show that in the limit of zero frequency this cross section coincides with the area of the horizon. From this result we find $\eta = \frac{\pi}{8}N^2T^3$. We conjecture that for finite 't Hooft coupling g_{YM}^2N the shear viscosity is $\eta = f(g_{YM}^2N)N^2T^3$, where f(x) is a monotonic function that decreases from $\mathcal{O}(x^{-2}\ln^{-1}(1/x))$ at small x to $\pi/8$ when $x \to \infty$.

DOI: 10.1103/PhysRevLett.87.081601

PACS numbers: 11.25.Hf, 11.10.Wx

Introduction.—At finite temperatures, the large distance, long time behavior of gauge theories is described, as in any other fluid, by a hydrodynamic theory [1]. To write down the hydrodynamic equations one has to know the thermodynamics (i.e., the equation of state) of the medium, as well as the transport coefficients: the shear and the bulk viscosities, the electrical conductivity [in the presence of a U(1) gauge group], and the diffusion constants (in the presence of conserved global charges).

dS/CFT 4π

In this Letter, we compute the shear viscosity η of the strongly coupled finite-temperature $\mathcal{N} = 4$ SYM theory (the bulk viscosity of this theory vanishes due to scale invariance). We first relate, using previously known results from the AdS/CFT correspondence, the shear viscosity with the absorption cross section of low-energy gravitons falling perpendicularly onto near-extremal black three-branes. We further show that this cross section is equal to the area of the horizon, in a way very similar to the case of

 \checkmark no question here, please,

since no answer

Partonic energy loss Medium response Tomography

✓ Central ; suppression of high pt

AutAu vs dtAu

✓ High pt suppression in Au+Au, while not observed in d+Au.

→Effect is not due to initial state, but final state. nter School, 2012.1.11

Onset of suppression between 22 and 39 GeV

PHENIX, PRL101, 162301

"Jet quenching" in nucleusnucleus collision.

VTwo quarks sufficient and the second of the

- One goes out to vacuum creating jet,
- but the other goes through the QGP suffering energy loss due to gluon

✓ Manifestation:

- attenuation/ disappearance of jet
- suppression of high pt hadrons
- modification of jet frag. 45

Energy loss of charged particle in a matter

Radiative √Bethe-Heitler (thin; L<< λ) √Landau⁻ Pomeranchuk-Migdal (thick; L>> λ)

√ Bethe-Bloch

Collisional

✓ Measurements of dE/dx gives prop. of matter ● Energy loss in QED plasma gives T & mp info.

Energy Loss in QCD

Many theories on

- Collisional loss
- Radiative loss
 - Bethe-Heitler regime
 - ➡LPM regime

 $\Delta E \propto \alpha_S C_{\rm R} \langle \hat{q} \rangle L^2$ DQCD (Executive) Summary Radiative loss is dominant Effects are;

- suppression of high pt hadron
- unbalanced back-to back
- modification of jet fragmentation softer, larger multiplicity, angular broadening

 $\Delta E_{\rm gluon} > \Delta E_{\rm quark} > \Delta E_{\rm charm} > \Delta E_{\rm bottom}$

Sophisticated Analysis on both RAA & V2

• Large v₂ favors stronger path length dependence Yasuo MIAKE, Asian Winter School, 2012.1.11

Now, LHC

View from RHICians

	RHIC	LHC
√ snn (GeV)	200	5500
T/T _c	1.9	3.0-4.2
ε(GeV/fm ³)	5	15-60
τ _{QGP} (fm/c)	2-4	>10

✓Nothing much changes from RHIC to LHC.

- Nevertheless,
 - Larger/longer QGP
 - ➡Nice to confirm RHIC results

Moreover, higher energy jets become available!

More gluons !!

Chances at LHC

Hot/Jet Results from LHC

Detail study of dijet asymmetry pp vs Pb+Pb Challenge to the

Yasuo MIAKE, Asian Winter School, 2012.1.11

Challenge to theorists!

Future: fluctuations

Fluctuations of the Universe Fluctuations of Little bang **WMAP** t=0.6fm 10 60 50 5 ALICE, Sep,2011 0.35 centrality 1.015 p." 2-2.5 GeV/c • -0-2% 0.30 p_assoc 1.5-2GeV/c 1.010 1.010 8.1 1.010 1.010 1.000 1.000 2 <p," <2.5 GeV/c Pb-Pb 2.76TeV, 0-2% 0.25 1.5 <p_assoc <2GeV/c $V_{n\Delta} (10^{-2})$ 0.20 0.15 8th! 0.10 ((\vec{V})) 0.05 \checkmark Clue to th 0.990 0 0 3 2 MC Glaube $\Delta \phi$ (rad)

> Fig. 1. Left: correlation function for charged hadron pairs from head-on Pb–Pb collisions. Right: corresponding spectrum of Fourier harmonic amplitudes vs n.

Relativistic Heavy Ion Collisions have provided very interesting play ground for theorists

- New players have joined and they are amazingly successful
 - String theory, Black hole dynamics, AdS/CFT
- ✓Now challenges are,
 - jet quench,
 - rapid thermalization,
 - parton cascades too slow
 - initial conditions
 - chiral glass condensate

