Matrix model formulations of superstring theory

6th Asian Winter School on strings, particles and cosmology 2012 1/10-1/20, Kusatsu, Japan

Jun Nishimura (KEK,Sokendai)

Plan of the lectures

- I. Superstring theory and matrix models (1/11 10:45-12:00)
- II. The birth of our universe (1/12 10:45-12:00)
- III. Confirmation of gauge/gravity duality (1/14 10:45-12:00)

Rem.) I will be here until 1/14 morning. Please ask me questions before I leave.

I. Superstring theory and matrix models

Plan of the 1st lecture: Superstring theory and matrix models

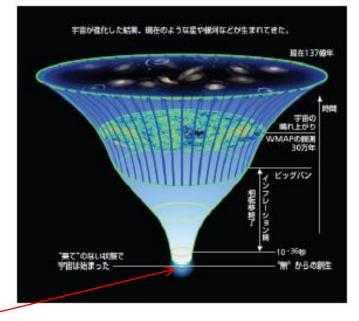
- 1. What is superstring theory ?
- 2. Matrix model for superstring theory
- 3. Summary

I-1 What is superstring theory ?

1. What is superstring theory ?

Why superstring theory ?

A: To go beyond Einstein's theory of general relativity.


What's wrong with Einstein's theory of general relativity ?

A: Singularities appear at the center of a black hole at the beginning of the Universe

Singularities (space-time curvature diverges)

Black hole

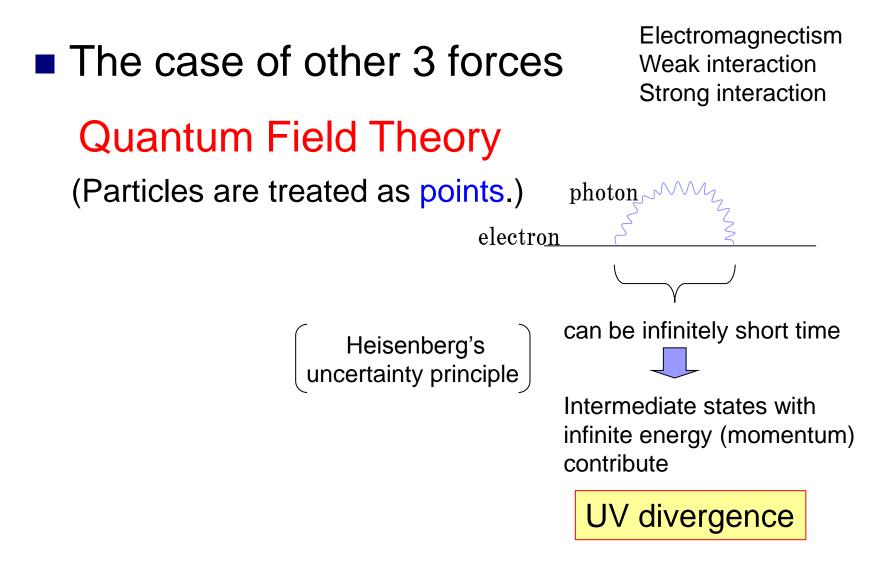
Big bang

singularity (curvature diverges)
General Relativity becomes invalid!
 (Quantum effects become non-negligible.)

The scale at which quantum effects of gravity become non-negligible

3 fundamental constants of physics

- h (Planck constant) o
- c (speed of light)G (gravitational constant)


quantum mechanics relativity gravity

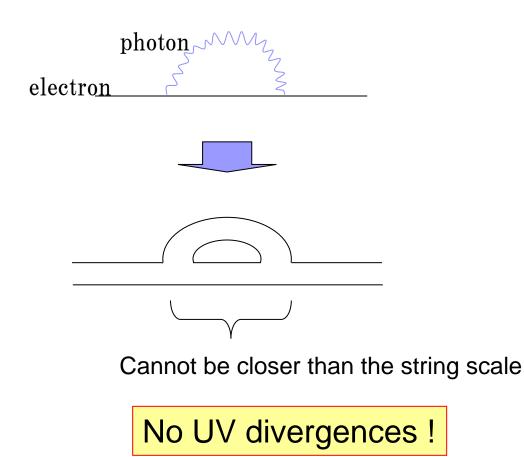
written in terms of units of length, time, mass

Planck length
$$L_{pl} = \left(\frac{\hbar G}{c^3}\right)^{1/2} \sim 10^{-33} \text{cm}$$

When the curvature radius of space-time becomes Planck length, one cannot use Einstein's theory of general relativity !

Why strings ?

Renormalization theory (Tomonaga, Feynman, Schwinger) The results for physical quantities (mass spectrum, scattering amplitudes, etc.) can be made finite by redefining the parameters that describe elementary processes

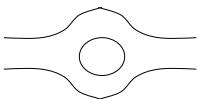

Coupling constant

- Dimensionless in the case of gauge theory "renormalizable theory"
- Newton's gravitational constant $[G] \sim M^{-2} \qquad F_{\text{Newton}} = G \frac{m_1 m_2}{r^2}$ $F_{\text{Coulomb}} = \alpha \frac{q_1 q_2}{r^2}$

In naïve quantum extension of Einstein's theory :

UV divergence becomes worse at higher orders in the expansion w.r.t. the coupling constant !

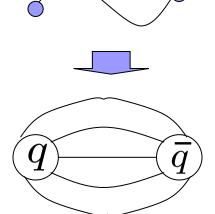
String theories do not have UV divergence



Crucial differences from particle theory based on quantum field theory

propagation strings can vibrate !

- A single string can represent various particles. (Fermions as well as bosons appear from superstrings.)
- interactions joining and splitting of strings

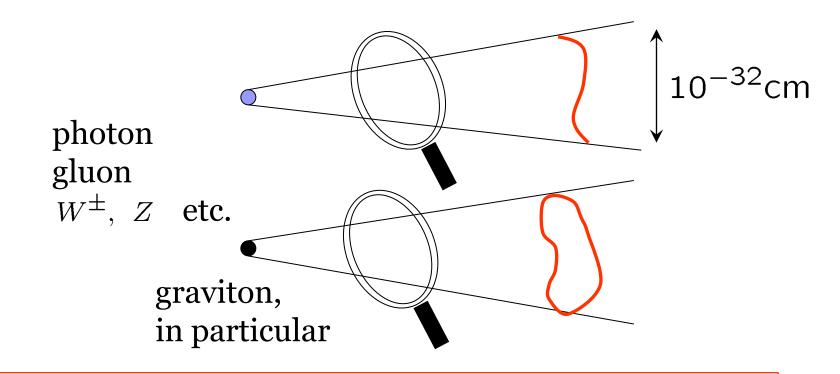


- There is no particular "interaction point" (hence no UV div.).
- There is no freedom to introduce ad hoc interactions.

Historical remark

Closed string inevitably includes massless spin-2 particle

This was a crucial defect as a theory for hadrons (Nambu's idea) since there is no such states, but was turned into a virtue ("graviton") in the context of quantum gravity (1974 Sherk-Schwarz, Yoneya)



 The scale of the theory had to be changed from the scale of hadrons to the Planck scale, though. (a few 100 GeV) (10¹⁹GeV)

Superstring theory

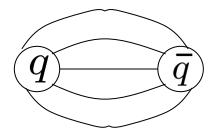
1974 Sherk-Schwarz, Yoneya 1984 Green-Schwarz

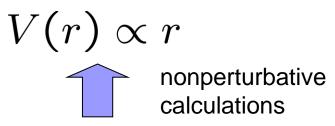
Various vibration modes correspond to various particles.

Unified description of 4 forces including gravity

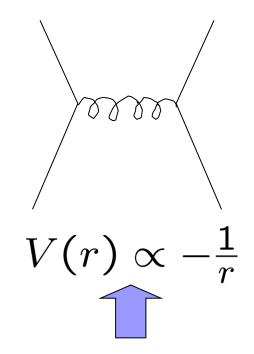
The goals of superstring theory

particle physics


 space-time dimensionality puzzle critical dimension is (9+1), but we live in (3+1)d
 particle contents gauge group : SU(3)×SU(2)×U(1) matter contents : 3 generations (q and l) + Higgs(?)
 coupling constants in the Standard Model


 the birth of our Universe and "inflation"
 the fate of our Universe (dark energy, cosmological constant problem)
 the interior structure of a black hole

A big obstacle: non-perturbative definition is not yet established !


Comparison : QCD

quark confinement

lattice gauge theory (Wilson, 1974)

perturbative calculations

Compactification

Superstring theory is naturally defined in (9+1)dim.
 Unitarity + Lorentz invariance

 (3+1)-dimensional space-time is expected to appear due to some nonperturbative dynamics.

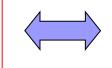
not known, at least, until recently.

Search for perturbative vacua with compactified 6d.
 Good : One can obtain SM-like models.
 Bad : Too many vacua. ("Landscape")

Understanding the nonperturbative dynamics of compactification is crucial to understand our real world !

"Landscape"

Tremendously many vacua we are living in one of them due to statistical reasons or just because of "anthropic principle"


- Pessimism that appeared from studies based on perturbative string theory + D-branes solitons in string theory (non-perturbative objects)
- It remains to be seen what happens if full nonperturbative effects are taken into account !

I-2 Matrix model for superstring theory

Matrix model as a nonperturbative formulation of string theory

't Hooft (1974)

Feynman diagrams in U(N) gauge theory

(discretized) string worldsheet

large-N limit
with
$$\lambda = g_{YM}^2 N$$
 fixed
 $\frac{1}{N}$ -expansion

tree diagrams (classical limit)

perturbative expansion

* Note : gauge theory is well-defined for finite N.

One may hope to obtain a nonperturbative formulation of string theory by using matrix degrees of freedom !

An explicit example of nonperturbative string theory

Brezin-Kazakov, Douglas-Shenker, Gross-Migdal (1990)

$$Z = \int d\phi e^{-S}$$

$$S = N \operatorname{tr} \left(\frac{1}{2} \phi^2 - \frac{\kappa}{3} \phi^3 \right)$$

 $\kappa \to \kappa_{\rm Cr} \text{ as } N \to \infty$ with $|\kappa - \kappa_{\rm Cr}|^p N$ fixed (double scaling limit)

All the diagrams of higher orders equally contribute.

nonperbative formulation of string theory with 0d target space

Matrix model for superstring theory in 10d

IKKT model (1996) Ishibashi-Kawai-Kitazawa-Tsuchiya ('96)

$$S_{b} = -\frac{1}{4g^{2}} \operatorname{tr}([A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}])$$

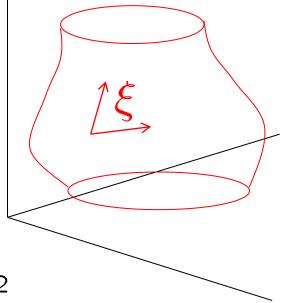
$$S_{f} = -\frac{1}{2g^{2}} \operatorname{tr}(\Psi_{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[A_{\mu}, \Psi_{\beta}])$$

 $N \times N$ Hermitian matrices

 $\begin{array}{ll} A_{\mu} & (\mu = 0, \cdots, 9) & \text{Lorentz vector} \\ \Psi_{\alpha} & (\alpha = 1, \cdots, 16) & \text{Majorana-Weyl spinor} \\ & & \quad \textbf{raised and lowered by the metric} \\ & \eta = \text{diag}(-1, 1, \cdots, 1) \end{array}$

The action has manifest SO(9,1) symmetry.

Connection to the worldsheet formulation

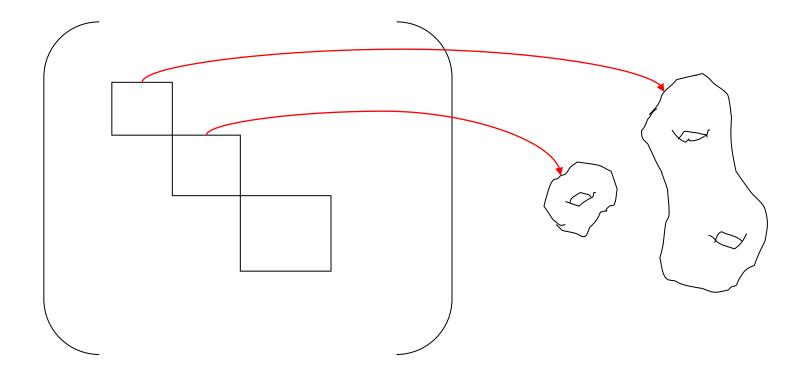

worldsheet action

$$S = \int d^2 \xi \sqrt{g} \left(\frac{1}{4} \{ X^{\mu}, X^{\nu} \}^2 + \frac{1}{2} \bar{\Psi} \gamma^{\mu} \{ X^{\mu}, \Psi \} \right)$$

$$\{X,Y\} \equiv \frac{1}{\sqrt{g}} \epsilon^{ab} \frac{\partial X}{\partial \xi^a} \frac{\partial Y}{\partial \xi^b}$$

Poisson bracket (regarding ξ_1 and ξ_2 as p and q in Hamilton dynamics)

quantization \implies IKKT $(\hbar \sim \frac{1}{N})$ $\{X^{\mu}(\xi), X^{\nu}(\xi)\} \mapsto -i[A^{\mu}, A^{\nu}]$ $X^{\mu}(\xi)$, $\Psi(\xi)$

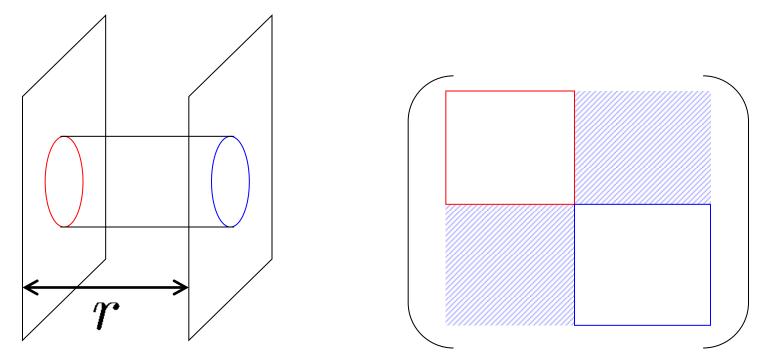

$$\mathcal{N} = 2$$
 supersymmetry

$$\begin{cases} \delta^{(1)}A_{\mu} = i \bar{\epsilon}_{1} \Gamma_{\mu}\psi & \begin{cases} \delta^{(2)}A_{\mu} = 0\\ \delta^{(1)}\psi = \frac{i}{2} \Gamma^{\mu\nu}[A_{\mu}, A_{\nu}]\epsilon_{1} & \delta^{(2)}\psi = \epsilon_{2} \end{cases}$$

Take a linear combination :
$$\tilde{Q}^{(1)} = Q^{(1)} + Q^{(2)}\\ \tilde{Q}^{(2)} = i(Q^{(1)} - Q^{(2)}) \end{cases}$$
$$[\bar{\epsilon}_{1}\tilde{Q}^{(i)}, \bar{\epsilon}_{2}\tilde{Q}^{(j)}]A_{\mu} = -2\delta^{ij}\bar{\epsilon}_{1}\Gamma_{\mu}\epsilon_{2}\mathbf{1}_{N\times N}$$

"translation" is realized by $\ \delta A_{\mu} = c_{\mu} \mathbf{1}_{N \times N}$

consistent with identification of A_{μ} as "coordinates"


Natural realization of 2nd quantization

Each of these blocks \iff disconnected worldsheet

Many-body states of strings are naturally included !

Emergence of gravitons

Integrate out the off-diagonal elements to obtain the effective action

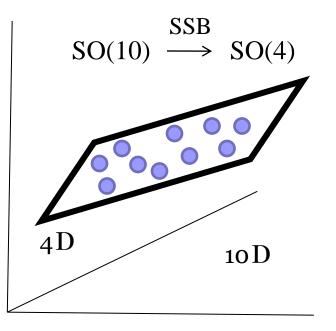
 $\overline{r8}$

Propagation of graviton dilaton rank-2 anti-sym. tensor

Dynamical generation of Euclidean space-time

Wick rotation $A_0 = iA_{10}$ $\Gamma^0 = -i\Gamma_{10}$

Does our 4-dimensional space-time appear ?

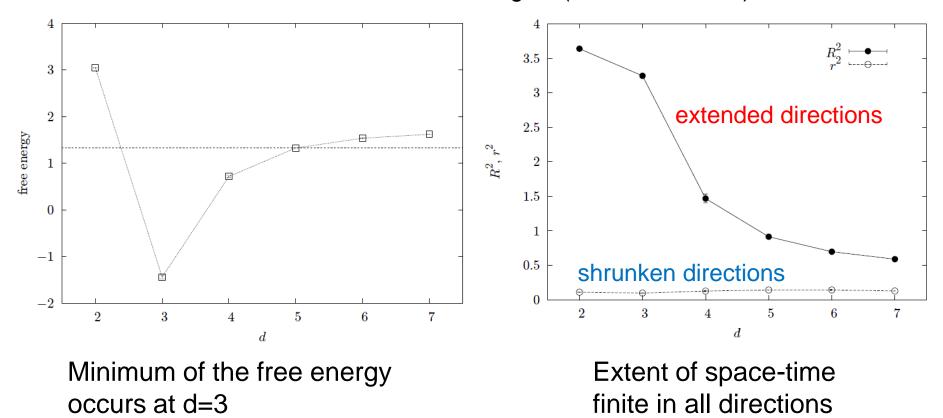

 $10N \times N$ Hermitian matrices

$$(A_{\mu})_{ij} = (x_i)_{\mu} \delta_{ij} + (a_{\mu})_{ij}$$
$$\mu = 1, \cdots, 10$$
$$i, j = 1, \cdots, N$$

Euclidean model

Finite without cutoff

Krauth-Nicolai-Staudacher ('98), Austing-Wheater ('01)


Dynamical generation of Euclidean spacetime (cont'd)

- Derivation of low-energy effective theory branched-polymer-like system Aoki-Iso-Kawai-Kitazawa-Tada ('99)
- Explicit calculations by the Gaussian expansion method to study SSB of SO(10)

Nishimura-Sugino ('02), Nishimura-Okubo-Sugino, Kawai, Kawamoto, Kuroki, Matsuo, Shinohara, Aoyama, Shibusa,...

- Recent observation Nishimura-Okubo-Sugino('11)
 - 1. free energy of SO(d) symmetric vacua (d=2,3,4,5,6,7) minimum at d=3
 - 2. extent of space-time finite in all directions

Results of the Gaussian expansion method J.N.-Okubo-Sugino (arXiv:1108.1293)

SSB of SO(10) : interesting dynamical property of the Euclidean model, but is it really related to the real world ?

I-3 Summary

Summary of the 1st lecture

Superstring theory

- Severeness of UV divergence in quantum gravity naturally hints at extended objects
- unified theory of all particles (both forces and matters)
- however, too many vacua ("landscape")
 - due to variety of compactifications from 10d to 4d
- Fully nonperturbative formulation is crucial

Matrix models

- > analogous to lattice gauge theory for QCD
- IKKT model : nonperturbative formulation of superstrings
- the Euclidean version has interesting dynamics but not quite realistic... (motivates Lorentzian version)