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First lecture

@ Motivations for studying four dimensional N=2
theories

@ N=2 supersymmetric gauge theories

@ Older examples of exact results in four-
dimensional N=2 gauge theories

@ Wilson loops in N=4 super Yang-Mills and AdS/CFT

@ Localization for N=2 gauge theories on S*

— Strategy for localization

— Localization equations and their solutions



Second lecture

@ Localization for N=2 gauge theories on S*
(continued)

— Gauge-fixing

— Fluctuation determinants and the equivariant
Index

~ One-loop contributions
— Instanton partition function on R*

— Instanton contributions on S*%

@ 4D/2D correspondence

® S-duality
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Third lecture

Localization for T Hooft loops on S*

— Motivations, set-up and localization
— Monopole/instanton correspondence

— Results and comparison with 2D theories

Line operators on S!xR3

Instanton counting with surface operators
Instanton counting on ALE spaces
Superconformal index

Concluding remarks
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Motivations

N=2 theories are not chiral, so not suitable as
a model for the physics beyond the Standard
Model. Why are we interested?



Motivations

® Good theoretical laboratories for studying
non-perturbative effects and dualities.

@ Rich mathematical structure: Donaldson
theory, geometric Langlands program, etc.

@ May help understand M5-brane theory.

@ dHolographic duals. cond-mat applications?



Motivations

N=2 gauge theories are related to
@ 2D CFTs
@ Hitchin systems
@ Ofther integrable models

N=2 theories admit interesting operators
@ Wilson-t Hooft loop operators
@ Surface operators

® Domain walls



Basics of N=2 SUSY
gauge theories

@ Vector multiplet for gauge group G
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® N=2 SUSY is restrictive. Affter the gauge
group and the matter representations are
specified, variable parameters are gauge
couplings, theta angles, and masses. Given

them, the renormalizable Lagrangian on R* s
unique.
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(Older) exact results in
N=2 theories

@ Witten ‘88: topological twist of N=2 gauge
theory

@ Seiberg and Witten ‘94: exact low-energy

effective action in terms of the prepotential

@ Nekrasov ‘02: instanton partition functions
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Topological twist of
N=2 gauge theory

@ Fields in N=2 theory transform under the
Lorentz and R-symmetry groups

SU(Q)]eft X SU(Q)right X SU(Q)R
% Infer‘pr‘ef SU(Q)]eft X [SU(Z)right X SU(Z)R]diag

as the new Lorentz group. Twisted theory.

@ There exists a scalar supercharge Q.
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@ Can put the twisted theory on an arbitrary
curved 4-manifold X..

@ The action is Q-exact up to a topological

term /
1 T
Sthsted — _Q_Q(. . .) I / TrF /\ F .
J im Jx,
v, A7
TR )
2T g?

@ If there is no matter, the Q-exact term is
the Mathai-Quillen representative of the
Euler class on the space of connections.
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@ The infinite dimensional path integral reduces
to the finite dimensional ones

/DA...e_S...:qu/ k) |
1. Minst, k (X4a) T

(5
® These are Donaldsons invariants for the 4-
manifold X..

@ No IR divergence for compact X..
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Seiberg-Witten
prepotential

@ In '94 Seiberg and Witten determined the
low-energy effective action for N=2 gauge
theories in the Coulomb branch.

Bk i e R / S 0T a
Seff—4ﬂ_ d”xIm d@aAA+ de@AQWW_
@ Exact prepotential F determined by

consistency conditions, mainly holomorphy.

@ Direct calculation difficult. 3IR divergence
on R*.
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Nekrasovs instanton
partition function

@ In ‘02, Nekrasov circumvented this IR

problem by introducing a useful
regularization called Omega deformation.

@ R* fibered over S! with rotations in two
planes. Reduce on S'. Parameters €1, €2.

® Omega deformation + topological twist =
"Mathai-Quillen representative of the
equivariant Euler class” of certain bundles.
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@ Nekrasov used an RG flow to argue that Ziqs:
should be related the prepotential:

1

Ziglk nithca T nelll

(NS Gl €007 0

@ Nekrasov and Okounkov confirmed this by
computing the limit and comparing with
kKnown results.

@ Will compute Zinst in the next lecture.

19



Wilson loops In
N=4 super Yang-Mills

® For Pestun, the motivation for exact
localization calculation came from a
conjecture inspired by AdS/CFT.

@ N=4 U(N) SYM < Type IIB string on AdSsxS?
@ Maldacena-Wilson loop <> Minimal surface

WR 244 TI,Re— LC}g(ZA—FCI)()dS)

R: fundamental of U(N)
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Gaussian matrix model
conjecture

@ Half-BPS loop: circular or straight line.

@ Sum of planar rainbow diagrams for (Wr)
(combinatorics captured by Gaussian matrix
model) reproduce the regularized area of the
minimal SUI”]CGCQ. [Erickson-Semenoff-Zarembo]

@ Perturbatively, a conformal anomaly implies

that (IWg) reduces to some matrix model.
[Drukker-Gross]

21



@ Conjecture:

(Wg) = Z71 / dMe™ 7 "M Ty peM

;
@ Z: partition function of the matrix model
@ t : Cartan of U(N) = hermitian matrices

® Many, many tests by AdS/CFT.

@ Pestun wanted fo prove the conjecture by
localization.
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10D notation

@ 4D N=4 super Yang-Mills is a dimensional
reduction of the 10D super Yang-Mills.

@ Apr: 10D gauge field, P : 16-component chiral
spinor.

® 10D Euclidean metric
ds® = Z doe™ dx™

23



@ 10D gamma matrices

(P D= 280}

¢ v
e ()

o I'M T'M are symmetric 16x16 matrices.

@ Compactify on small T® to get a 4D theory.
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@ The 4D action for N=4 super Yang-Mills on

R* is simply

1f bl
S — 5 /d4CIZ'TI°
g ;

— o DL

@ Covariant derivative and field strength

Dy = 0y + 1A

FMN = —i[DM,DN]

@ Pointcare SUSY 6. Ay =€l Ty U,

|

0.0 — 5FMNP[MPN]E
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® 4D field content

cauge field
real scalars
fermions

AM
(I)A EAA
1Y
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Superconformal
symmetry of N=4 SYM

@ N=4 superconformal transformations on R*
are generated by position dependent SUSY

parameter e(x) =€, + x“fuec

® Fermionic transformations in N=4 SYM are
5€AM — ET(.CE)FM\IJ,

1 1
5. U = —Q—FMNF[MFN]e(x) i 51““’4(1) 40,€(x)

@ Generate N=4 superconformal algebra
PSU(2,2/4)
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Conformal Killing spinor
equations

@ The spinor ¢(x) satisfies the conformal
Killing spinor equations
1

Ve — fﬂg, e ZI’“VMG

@ The equations are invariant under Weyl
rescaling ds® — Q*ds” if the spinor
transforms as ¢ — Q'/%¢
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From R* to S*

@ Now stereographically map R* to S* of radius

r by taking a conformal factor g4
ghrh\ T
() =645
%)
@ Still have PSU(2,2|4) as symmeftry. v

@ Place a Wilson loop along the equatorial S!

1] e e s e )
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Breaking to N=2
superconformal algebra

@ To restrict to N=2 subalgebra, impose the
projection condition

OIS B x e
@ Generate N=2 superconformal algebra

SU(2,2[2) x SU(2)p C PSU(2,2|4)

SU(Q)leftXSU(Z)right SU(Q)RXSU(Z)F U(I)R
et — rmmm — p—"—
Al,...A4 (I)57---7(I)8 (I)g,q)()
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Breaking to N=2 SUSY
algebra on S*

@ It is possible to further restrict SUSY
parameters so that the anti-commutators of
fermionic charges do not generate dilatation
or U(1)r symmetry. This will allow mass.

@ After choosing a U(1) subgroup of SU(2)r
generated by self-dual 4x4 anti-symmetric
matrix Rk normalized as RxRk=4, these SUSY
parameters are characterized by

ey b
Dgé= —grur’fr%klr%
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@ The restricted SUSY parameters geenerate
OSp(2l4) : N=2 SUSY algebra on S*. [pestun]
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Adding mass

@ 0Sp(2|4) does not include dilatation that
would be broken by mass. Can we add a
mass term?

@ Choose M: a generator of the flavor
symmetry SU(2)s. M=diag(m,-m).

@ Weakly gauge the flavor symmetry SU(2)-
and set a real scalar in the new vector
mulfiplet o M.
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® Redefine Dy = Z[(I)O : .] + M

@ Can be regarded as a background Wilson line
in the compactified O-direction. Green-
Schwarz mechanism.

@ 10D field strength” Fy;n = —i[Dyr, D]
includes mass.

@ SUSY transformations get deformed by mass.
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@ M acts as an anti-self-dual 4x4 anti-
symmetric matrix on hypermultiplet scalars:
(M- @); = M1 Py

. Iy
@ On spinors, M - U = y Ll

® Real work: find a mass-deformed action
preserving N=2 SUSY.

@ Strategy: start with the familiar action with
a conformal coupling fo the curvature and
compute

1

, :
5. Tr 5EWMFMN S Dy e T—QCI)A(I)A
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@ This turns out to equal 0, % lekl(I)j(I)k
(A

® Thus the action

1 >
S=— / d*zVhTr | = Py FMYN — 9T Dy 0
g

2
2 1 - k_
+—2<I>A<I>A leMkZCI)JCID
¥ Ar ;

IS supersymmeftric.

@ Action for mass-deformed N=4 SYM (known as
N=2%) can be generalized to other N=2
theories. Will use N=2* to simplify notation,
but will get results for general N=2 theories.
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Off-shell SUSY

@ Will need just one supercharge () = . for
localization.

@ In the usual formulation, its square is a
bosonic symmetry generator up to the
equation of motion (on-shell).

@ For localization we need it to square to a
bosonic symmetry off-shell.

@ Need auxiliary fields.
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Berkovits' method

@ First we construct seven chiral spinors V;
(j=1, . . ., 7) satisfying

Vj:O,

1 5
vV +ecid—(e el
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@ Add real bosonic auxiliary fields K;.

® Off-shell SUSY transformations are

5€AM = ETFM\IJ,
1 1 -

0. K; =3 1 Dyl
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@ The supercharge squares to bosonic
symmetries off-shell.
M _ TpM

® Define v’ = ¢ e and normalize € so that

S —

@ Then Q°=iJ+iR+r®y+rM

@ Here J is the isometry generated by the
vector field v*, R is the R-symmetry
generator, ¢y acts as a gauge
transformation, and M is the flavor
symmetry generator.
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® The action with auxiliary fields for N=2*
SYM on S*is given by

1 Al
S=— / d*zVhTr SEh i PR AT Dy
g _

2 ik
— D 4D
+7°2 S Ar

RyM;,®'®" — K, K,
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Strategy for localization

@ Pestuns calculation in 2007 is the prototype
of localization calculations discussed in S.
Kims lectures.

@ Choose a supercharge Q that preserves the
operator O = Trpe~ $(i4+i®0ds) and modify
the action

/DA...e—SO i /DA...e_S_tQ‘VO
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@ For Q*é-invariant V, the path integral is
independent of t. To see this, compute

% / DADUDKe @V
= — /DA A eEHE SO
— = /DA...Q Eaiiaes o

® We used Q-invariance of S and O, and Q?2-
invariance of V.
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@ We may write

Q4 / d*oVh (&AM(Q:) - Aﬂi oy 88 &If(m) : )

@ This is a functional analog of the exterior
derivative d. Thus

d
7, / DADUDKe 212V 0 =0
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o If we take V = (U, (@ - ) the bosonic terms
are given by ||Q - V| Cc Q -V

@ This is positive-semidefinite. In the limit ¢ — +o0

the path integral localizes to the solutions of

& e
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General procedure for
localization

1. Pick a supercharge Q that is preserved by
the operator to compute. Add auxiliary fields
so that Q squares fo bosonic symmetries off-
shell.

2.Choose a Q2-invariant functional V such that

the bosonic terms of Q-V are positive-
semidefinite. Add tQ -V to the action.

3.Find the saddle points of e '@V,
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4.Compute the fluctuation determinants at the
saddle points. This involves gauge-fixing and
the inclusion of ghost fields. Either expand
fields in the eigenmodes of kinetic operators,

or use the equivariant index theorem.
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Our choice of Q

@ 0Sp(2|4) (N=2 on S*) has 8 supercharges.

@ Wilson loop preserves 4 out of 8

P ods

@ Require that € is right-handed at the north
pole (Q~scalar supercharge for twisted
theory) . 2 out of 4.

@ Any linear combination of the two will do.

48



Completing squares

@ To solve the localization equation, eliminate
gamma matrices from||Q - ¥||° and complete

squares.

@ For the vector multiplet

ot o L v,
Q- ¥|]? D sin” i(F‘W + wW<I>9)2 + cos? §(Fj,, + w:VCI)g)Q

1
+ (D, ®,)% + 5[%7 ®,)[@%, @°] + (K; + w;Po)”

@ w,, and w; are expressions constructed from €

and gamma matrices. Ois the longitude such
that the north and south poles are at 6 =0

and Tt .
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@ Away from the north and south poles
(i.e., 0 #£ 0, 7),

i —(w+ +w™ )Py

@ Bianchi identity implies that

(% D[p(w

D[p(w+ w_)

Pg =30

p]

+w™ ), is non-zero, so 9 and

hence F,, have to vanish.

® Py can be a non-zero constant.
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@ A similar expression (complete squares) for
the hypermultiplet contains positive-definite

terms
5 8
5
12 D)%
k=5

@ Hypermultiplet scalars must vanish.
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Solutions of () - W =0

i a-=al] "o — I e
Por— 0 A="108 s 55.Y
by = a = constant

K; =—w;a: 7=9,0,7
Ks=0"" o=l 07,4
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Non-perturbative
saddle points

@ The vanishing of F),, assumed that we were away
from the north and south poles.

@ Configurations that are localized at the poles may
contribute.

@ The localization action is approximately the action
for the Omega-deformed theory of Nekrasov.
Small instantons will contribute.
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