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Motivations

N=2 theories are not chiral, so not suitable as 
a model for the physics beyond the Standard 
Model.  Why are we interested?
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Motivations

Good theoretical laboratories for studying 
non-perturbative effects and dualities.

Rich mathematical structure: Donaldson 
theory, geometric Langlands program, etc. 

May help understand M5-brane theory.

∃Holographic duals.  cond-mat applications?
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Motivations
N=2 gauge theories are related to

2D CFTs 
Hitchin systems
Other integrable models

N=2 theories admit interesting operators
Wilson-’t Hooft loop operators
Surface operators
Domain walls
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Basics of N=2 SUSY 
gauge theories

Vector multiplet for gauge group G

Hypermultiplet in representation R
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SU(2) 
R-symmetry



N=2 SUSY is restrictive.  After the gauge 
group and the matter representations are 
specified, variable parameters are gauge 
couplings, theta angles, and masses.  Given 
them, the renormalizable Lagrangian on R4 is 
unique.
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(Older) exact results in 
N=2 theories

Witten ’88: topological twist of N=2 gauge 

theory

Seiberg and Witten ’94: exact low-energy 

effective action in terms of the prepotential

Nekrasov ’02: instanton partition functions
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Topological twist of 
N=2 gauge theory

Fields in N=2 theory transform under the 
Lorentz and R-symmetry groups

Interpret                                          

as the new Lorentz group.  Twisted theory.

There exists a scalar supercharge Q.
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Can put the twisted theory on an arbitrary 
curved 4-manifold X4.

The action is Q-exact up to a topological 
term

If there is no matter, the Q-exact term is 
the Mathai-Quillen representative of the 
Euler class on the space of connections.
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The infinite dimensional path integral reduces 
to the finite dimensional ones 

These are Donaldson’s invariants for the 4-
manifold X4.

No IR divergence for compact X4.
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Seiberg-Witten 
prepotential

In '94 Seiberg and Witten determined the 
low-energy effective action for N=2 gauge 
theories in the Coulomb branch.  

Exact prepotential F determined by 
consistency conditions, mainly holomorphy.

Direct calculation difficult.  ∃IR divergence 
on R4.
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Nekrasov’s instanton 
partition function

In ’02, Nekrasov circumvented this IR 
problem by introducing a useful 
regularization called Omega deformation.  

R4 fibered over S1 with rotations in two 
planes.  Reduce on S1.  Parameters          . 

Omega deformation + topological twist ➔ 
“Mathai-Quillen representative of the 
equivariant Euler class” of certain bundles.

18



Nekrasov used an RG flow to argue that Zinst 

should be related the prepotential: 

Nekrasov and Okounkov confirmed this by 
computing the limit and comparing with 
known results.

Will compute Zinst in the next lecture.
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Wilson loops in 
N=4 super Yang-Mills
For Pestun, the motivation for exact 
localization calculation came from a 
conjecture inspired by AdS/CFT.

N=4 U(N) SYM ⇔	 Type IIB string on AdS5xS5

Maldacena-Wilson loop ⇔	 Minimal surface
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R: fundamental of U(N)



Gaussian matrix model 
conjecture

Half-BPS loop: circular or straight line.

Sum of planar rainbow diagrams for
(combinatorics captured by Gaussian matrix 
model) reproduce the regularized area of the 
minimal surface.  [Erickson-Semenoff-Zarembo]

Perturbatively, a conformal anomaly implies 
that        reduces to some matrix model.  
[Drukker-Gross]
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Conjecture:

Z: partition function of the matrix model

  : Cartan of U(N) = hermitian matrices

Many, many tests by AdS/CFT.

Pestun wanted to prove the conjecture by 
localization.
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10D notation

4D N=4 super Yang-Mills is a dimensional 
reduction of the 10D super Yang-Mills.

    : 10D gauge field,    : 16-component chiral 
spinor.

10D Euclidean metric
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10D gamma matrices

          are symmetric 16x16 matrices. 

Compactify on small T6 to get a 4D theory.
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The 4D action for N=4 super Yang-Mills on 
R4 is simply

Covariant derivative and field strength

Pointcare SUSY
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4D field content
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Superconformal 
symmetry of N=4 SYM

N=4 superconformal transformations on R4 

are generated by position dependent SUSY 
parameter

Fermionic transformations in N=4 SYM are

Generate N=4 superconformal algebra
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Conformal Killing spinor 
equations

The spinor      satisfies the conformal 
Killing spinor equations

The equations are invariant under Weyl 
rescaling                 if the spinor 
transforms as
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From R4 to S4

Now stereographically map R4 to S4 of radius 
r by taking a conformal factor 

Still have                as symmetry. 

Place a Wilson loop along the equatorial S1
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S1

S4



Breaking to N=2 
superconformal algebra

To restrict to N=2 subalgebra, impose the 
projection condition

Generate N=2 superconformal algebra
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Breaking to N=2 SUSY 
algebra on S4

It is possible to further restrict SUSY 
parameters so that the anti-commutators of 
fermionic charges do not generate dilatation 
or U(1)R symmetry.  This will allow mass.

After choosing a U(1) subgroup of SU(2)R 

generated by self-dual 4x4 anti-symmetric 
matrix Rkl normalized as RklRkl=4, these SUSY 
parameters are characterized by
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The restricted SUSY parameters geenerate 
OSp(2|4) : N=2 SUSY algebra on S4.  [Pestun]
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Adding mass
OSp(2|4) does not include dilatation that 
would be broken by mass.  Can we add a 
mass term?

Choose M: a generator of the flavor 
symmetry SU(2)F.  M=diag(m,-m). 

Weakly gauge the flavor symmetry SU(2)F 
and set a real scalar in the new vector 
multiplet to M.
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Redefine 

Can be regarded as a background Wilson line 
in the compactified 0-direction.  Green-
Schwarz mechanism. 

“10D field strength”                        
includes mass.

SUSY transformations get deformed by mass.
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M acts as an anti-self-dual 4x4 anti-
symmetric matrix on hypermultiplet scalars: 

On spinors,

Real work: find a mass-deformed action 
preserving N=2 SUSY.

Strategy: start with the familiar action with 
a conformal coupling to the curvature and 
compute

35



This turns out to equal

Thus the action 

is supersymmetric.

Action for mass-deformed N=4 SYM (known as 
N=2*) can be generalized to other N=2 
theories.  Will use N=2* to simplify notation, 
but will get results for general N=2 theories.
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Will need just one supercharge           for 
localization.   

In the usual formulation, its square is a 
bosonic symmetry generator up to the 
equation of motion (on-shell).

For localization we need it to square to a 
bosonic symmetry off-shell.  

Need auxiliary fields.
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Off-shell SUSY



First we construct seven chiral spinors   
(j=1, . . . , 7) satisfying
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Berkovits’ method



Add real bosonic auxiliary fields Kj. 

Off-shell SUSY transformations are
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The supercharge squares to bosonic 
symmetries off-shell.

Define                 and normalize    so that 

Then

Here J is the isometry generated by the 
vector field   , R is the R-symmetry 
generator,     acts as a gauge 
transformation, and M is the flavor 
symmetry generator.
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The action with auxiliary fields for N=2* 
SYM on S4 is given by
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Pestun’s calculation in 2007 is the prototype 
of localization calculations discussed in S. 
Kim’s lectures.

Choose a supercharge Q that preserves the 
operator                           and modify 
the action
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Strategy for localization



For Q2-invariant V, the path integral is 
independent of t.  To see this, compute

We used Q-invariance of S and O, and Q2-
invariance of V.
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We may write

This is a functional analog of the exterior 
derivative d.  Thus
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If we take                   the bosonic terms 
are given by

This is positive-semidefinite.  In the limit 

the path integral localizes to the solutions of 
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1. Pick a supercharge Q that is preserved by 
the operator to compute.  Add auxiliary fields 
so that Q squares to bosonic symmetries off-
shell.

2.Choose a Q2-invariant functional V such that 
the bosonic terms of Q·V are positive-
semidefinite.  Add tQ·V to the action.

3.Find the saddle points of e-tQ·V. 
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localization



4.Compute the fluctuation determinants at the 
saddle points.  This involves gauge-fixing and 
the inclusion of ghost fields.  Either expand 
fields in the eigenmodes of kinetic operators, 
or use the equivariant index theorem.
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OSp(2|4) (N=2 on S4) has 8 supercharges.

Wilson loop preserves 4 out of 8

Require that   is right-handed at the north 
pole (Q∼scalar supercharge for twisted 
theory) . 2 out of 4.

Any linear combination of the two will do.
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Our choice of Q



Completing squares
To solve the localization equation, eliminate 
gamma matrices from           and complete 
squares.  
For the vector multiplet 

     and wi are expressions constructed from   
and gamma matrices. θis the longitude such 
that the north and south poles are at θ=0 
andπ.
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Away from the north and south poles 
(i.e.,          ), 

Bianchi identity implies that

                      is non-zero, so     and 
hence      have to vanish.

     can be a non-zero constant.
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A similar expression (complete squares) for      
the hypermultiplet contains positive-definite 
terms

Hypermultiplet scalars must vanish.
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Solutions of 



Non-perturbative
 saddle points

The vanishing of       assumed that we were away 
from the north and south poles.

Configurations that are localized at the poles may 
contribute.

The localization action is approximately the action 
for the Omega-deformed theory of Nekrasov.  
Small instantons will contribute.
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