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Topics of lectures

Lecture 1: Holography and hydrodynamics
Lecture 2: Anomalies in hydrodynamics

Lecture 3: Nonrelativistic conformal invariance
Lecture 4: Quantum Hall states
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Lecture 1: Holography and hydrodynamics

® Hydrodynamics as an efffective theory
® Transport coefficients

® Gauge/gravity duality
® AdS/CFT prescription for real-time field theory
# Transport coefficients from AdS/CFT
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Motivation and Introduction



Motivation for studying hydrodynamics

® Applications: heavy ion collisions etc.
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Motivation for studying hydrodynamics

® Applications: heavy ion collisions etc.

® Conceptually a much simpler theory than QFT:
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Motivation for studying hydrodynamics

® Applications: heavy ion collisions etc.

® Conceptually a much simpler theory than QFT:

® Fewd.o.f.
#® Classical: bosonic modes with w < T
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Why gauge/gravity duality
Practical consideration:

® Strong coupling, not treatable by other methods

® Simple calculations

Conceptual consideration:
® Deep connection between QFT and black-hole physics

® sharp contrast to weak coupling:
weak coupling: QFT — kinetic theory — hydro

strong coupling: QFT — hydro
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Original AdS/CFT correspondence

Maldacena; Gubser, Klebanov, Polyakov; Witten

between N = 4 supersymmetric Yang-Mills theory
and type |IB string theory on AdSs x S°

2
ds® = R—(d:EQ + dz?) + R*dQ;

Z2
Large 't Hooft limit in gauge theory < small curvature limit in string theory

¢GNe>1e R/ly=vVa'R> 1

Correlation function are computable at large 't Hooft coupling, where string theory
— supergravity.
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The dictionary of gauge/gravity duality

gauge theory gravity
operator O field ¢
energy-momentum tensor 7}, graviton h,,,
dimension of operator mass of field
globar symmetry gauge symmetry
conserved current gauge field
anomaly Chern-Simon term

/eiS4D+¢OO _ /6%'55D

where Ssp is computed with nontrivial boundary condition

lim ¢(Z, z) = ¢o(T)

z—0
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Green’s function from AdS/CFT

Compute the correlator of an operator corresponding to a massless scalar ¢ in the

bulk.
First write down the field equation

aM(\/ —9g glw&/?b) =0
Solution with boundary condition ¢ — ¢¢ at z — O:
¢(z,p) = fp(2)¢o(p),

Here f,(z)e"?* solves the field equation with b.c. f,(z = 0) = 1.
Substituting to the action:

Sa= [GolDF@00DIs0 F2) = g @

Correlator: differentiating S.; with respect to ¢o:

(00) = =21lim F(p,2) ~ 27" f-p(2) f(2)

z—0
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Finite-temperature AdS/CFT correspondence

Black 3-brane solution:

7a2 ~ 2 T4
ds® = ﬁ[—f(r)dtQ + dz’] + T dr® + R*dQ:, fr)=1- T_fl

® =0, f(r) =1:is AdS5x S°, r = R?*/z.
® 1, #0: corresponds to N/ = 4 SYM at temperture

To

T =Ty =
"= T R2

Entropy = A/4G

2
S = %N3T3V3D

This formula has the same N? behavior as at zero 't Hooft coupling ¢ N. = 0
but the numerical coefficient is 3/4 times smaller.
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Thermodynamics

2 2
g — f(gQNc)%NCQT?’VgD

where the function f interpolates between weak-coupling and strong-coupling
values, which differ by a factor of 3/4:

)
1—%>\+\/§jg>\3/2+---, A<
27 T
f(A) = 1 3 450(3) (0)
\ Z+32)\3/2—|—"', A>S> 1]
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Euclidean correlators

Correlation functions: can be obtained by a finite-temperature version of AdS/CFT:

Zip|J] = e Sldall

| | >

Z, 0 =z
Due to geometry, correlation functions are periodic in Euclidean time.

Note: fixing the boundary condition at the boundary » = co completely determines
the solution. No separate boundary condition at » = rg IS necessary
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Hydrodynamics



Hydrodynamics

Is the effective theory describing the long-distance, low-frequency behavior
of interacting finite-temperature systems. Hydrodynamic regime

Valid at distances > mean free path, time > mean free time.

At these length/time scales: local thermal equilibrium: 7", 1 vary slowly in
space.

Simplest example of a hydrodynamic theory: the Navier-Stokes equations

The quark-gluon plasma can be described by a relativistic version of the
Navier-Stokes equation.

All microscopic physics reduces to a small number of kinetic coefficients
(shear viscosity 7, bulk viscosity, diffussion coeffecients).
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Relativistic hydrodynamics

Consider a neutral plasma: no conserved charge, except energy and momentum.

Thermodynamics: one variable T°

oP
P = P(T = — =Ts— P
()7 S aTj € S

Ideal (zeroth order) hydrodynamics
vV, " =0  T" = (e+ P)u"u” + Pg"”
4 equations for 4 unknowns (7" and u*, u* = —1).

Viscous hydrodynamics
T =T+ 1"
~—

viscous stress

Ambiguity of defining «* beyond leading order: fixed by u,IT*" = 0
(“Landau-Lifshitz frame”)

Physical interpretation: in the local rest frame momentum density is zero: 7% = 0.
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Shear and bulk viscosities

The most general form of the viscous stress is
1" = —pd™*“u”) — CP* (9 u)

PP = g"" +ufu”

1 1

AW = §P“O‘P”5(Aa5 + Aga) — §P“”PO‘BAQB

Shear viscosity n and bulk viscosity (. Affect damping of shear and sound modes.

In theories with conformal invariance (such as N' = 4 SYM theory), T =0
leads to
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Linearized hydrodynamics

We linearize around the static solution:

e = €0+ 0€
P = Py+6P
w = 14 0(@%)
u = ukl
Energy-momentum tensor:
T = €5+ d¢
TOi = (6() —+ P())ui
T = (Po+6P)§7 —n(0suj + dju;) — (¢ — 2n)5" opu”

Linearized hydrodynamic equations:

wde — (€0 + Po)g'u' =0
(€0 + Po)w +ing’Ju’ — ¢'0P +i(¢ + 3m)ai(7- @) = 0
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Shear modes

Decompse the velocity « into longitudinal and transverse parts:

i=dL+dy,  §-a=0, @q
Equation for transverse modes:
[(e0 + Po) +ing*liL =0
corresponds to an overdamped shear mode
Y
3 with dispersion relation
U

1’ ’lJZ* w=—iDg’, D=

eo + Fo
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Sound modes

Longitudinal modes: coupled system of equations for de and w:

woe — (6() + Po)qu” =0

oP

—q (E) de + [(60 + Po)w + Z(C + %n)qQ]u” =0

yields propagating sound waves

8P>1/2 p_ 1C+35m

Imaginary part < real part in the limit ¢ — 0.
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Kubo’s Formula
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Kubo’s formula: preliminaries

Viscosities can be expressed in terms of Green’s functions

® Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

® Example of such perturbation: gravitational waves
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Kubo’s formula: preliminaries

Viscosities can be expressed in terms of Green’s functions

® Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

® Example of such perturbation: gravitational waves

Long-wavelength ravitational waves induce hydrodynamic perturbations
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Generalization to curved space

To find the response of a hydrodynamic medium to external gravitational

perturbations, one needs to generalize the hydrodynamic equations to
curved spacetime.

Replacing derivative by covariant derivative:

v 1 v v
VMTM — ﬁﬁu(v —gTM )"‘FM)\TMA =0

g —nPMaPVB(Vauﬁ T Vﬁua) + ..
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Linear response theory

Consider a fluid initially in thermal equilibrium: T = Ty, u* = (1, 6).
Let us probe the fluid by a weak metric perturbation:

Guv = Nuv + hpw

Linear response theory:

0T (2)) = [ dy G (@ = y)has(y)
where G'r Is the retarded propagator of T*

We can use the hydrodynamic equation to find G at low momenta
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Kubo’s formula

For simplicity, consider perturbation spatially homogeneous, dependent on time
only:

all other components are zero
Spin-2 perturbation: does not excite motion of the fluid: v* = (1,0), T = To.
Nontrivial response from Christofell symbols:

0T = —Phyy — n(Vauy + Vyug)

but
1
vi’LLj = &Lul —ng’LLQ = §8thij
=0
Therefore:
G (w,0) = P — inw

We find Kubo’s formula relating shear viscosity with correlation function:

_ 1 TY,TY o
n——ilir%)wlmGR (w,0)
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Summary: two-point hydrodynamic correlators

Consider a momentum (w, 0,0, q).

Components of T#" are classified by O(2) in xzy directions

Expectation:

® Spin-2 components (e.g., T*Y): correlators do not show low-momentum
singularity, but imaginary part is tied to shear viscosity through Kubo’s
formula

® Spin-1 componets (e.g., T, T>%): correlators show shear-mode pole
w = —iDgq".

® Spin-0 components (e.g., 7°°): correlators have sound-wave pole.

Note: all correlators above are real-time correlators.
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Real-Time Finite-Temperature
AdS/CFT



Real-time correalation functions from AdS/CFT

Naive generalization of AdS/CFT correspondence runs into problem: solution is
not uniquely fixed by the boundary condition at z = 0.

Ou(v—99""0.¢) =0
Two solutions near z = zq:
f:l: N (Z . zo):lziw/élﬂ-T

are both regular.
Correspond to incoming and outgoing waves.

DTS Starinets: pick incoming waves
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Retarded propagator from AdS/CFT

® Find the mode function f,(z) with incoming-wave boundary condition at the
horizon

® Use the same formula as at zero temperature:

Gr o~ lim 277 f-p(2) f (2) 0

z—0
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Hydrodynamics
from Gauge/Gravity Duality



Calculating n from AdS/CFT

First write down equation for ¢ = A,

1 2 , 2 _k2
l¢p+ w > f
uf uf

where w = w/27T, k = q/2nT.

op =0, u:ZQ/zg

1"
pr _

Solution for small w, q:
fo= (1 —u?)

Applying general formulas for the retarded correlators:

G ™ = #u™ fop frlu—o

The coefficient # is fixed by the normalization of Hilbert-Einstein action. We find

GV () = —i gNQT?’ W

N—_——
n
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Hydrodynamic poles

One can find poles in the Green’s function that correspond to the shear (w ~ —ig?)

and sound modes.
Shear: start with the unperturbed metric

(xTR)’ (—f(u)dt® + dz*) + i 2

_ 2
" 4u2f(u)du flu)=1—u

ds® =

Assume nonvanishing h¢., h.,; momentum along z direction In terms of

Uht;c 'U/hz:c
H — HZ =
"7 (xTR)?’ (rTR)?
the field equations are
H| + k‘f =0
H”_lH’ kH—k—QH—O
¢ u ! uf 7 uf ’

where k = q¢/(27nT) and w = w/(2nT).
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Shear pole

Can be converted to one 2nd order equation for H;:

7 ue =0

Boundary condition at v = 1: Hj(u) ~ (1 — »)~*/2 (incoming waves)
The equations can be solved at small w, ¢
Boundary action:

1
U

(Hi(u)Hi(u) — Ha(u)H (u))

Sboundary ~
u=0

differentiating which one finds the corerlators, e.g.,

TaN?T3  §°
8 iw — Dg?

Gta:,ta: (w, q) —

where

Applications of gauge/gravity duality — p.32/47



Hydrodynamic modes (continued)

The value of D extracted from the pole is consistent with

as required by hydrodynamic equations.

Moreover: the correlator (T°°T°°) computed from AdS/CFT has a pole
corresponding to sound wave:

c,u:i—'l“q2

V3

The sound damping rate is also consistent with the calculated n and ¢ = 0.
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Viscosity entropy ratio

One can consider other theories with gravity duals
It seems that for each theory one has to compute n again.

However, it turns out to be unnecessary, since the ration /s can be shown to be
constant across all theories with gravity duals

= — Kovtun, Son, Starinets; Buchel, Liu

One method is to
® Use AJS/CFT and Kubo’s formula to map viscosity into of graviton
absorption cross section (by black hole)
® Using Einstein equation, show that the absorption cross section is equal to
the area of the horizon
® Use Bekenstein’s formula for the entropy S = A/(4G) to show the constancy
of n/s.
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Viscosity/entropy ratio and uncertainty principle

Estimate of viscosity from kinetic theory

n ~ pvul, s~n=2
m

mean free path
T muol ~ h P

S de Broglie wavelength

Quasiparticles: de Broglie wavelength < mean free path

Therefore n/s = h
® \Weakly interacting systems have n/s > h.

® Theories with gravity duals have universal /s, but we don’t know how to
derive the constancy of /s without AdS/CFT.

Corrections to /s computed Buchel, Liu, Starinets; Myers, Paulos, Sinha

n 1 15¢(3) | B5A'/?
s Am <1+ N2 TN T

Applications of gauge/gravity duality — p.35/47



Determining viscosity of QGP

® Collisions with nonzero impact
parameter

® Distribution of particles over
momentum is not axially symmetric:
characterized by “elliptic flow”
parameter vy

® explanation: pressure gradient
depends on angle

® Viscosity reduces vy

® Hydrodynamic simulations can give estimates for 7
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Measuring n/s at RHIC
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Gravity/hydrodynamics correspondence

® Starting from a black-brane solution, i.e.,

2
r

d82 = ﬁ(

—fdt? + di®) + o

ﬁ|ﬁ
ol

® Construct a family of configurations by changing T ~ ro/R? and boosting

along 7 directions by velocity u

Juv = Guv (23 T, uu)

® Promote 7" and # into fields.
9

Require regularity away from r = 0 = hydrodynamic equations

Bhattacharyya, Hubeny, Minwala, Rangamani
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Second-Order Hydrodyamics



Corrections to hydrodynamics

® Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

GV (W) = P — inw + #w”
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

GV (W) = P — inw + #w”
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w’/?

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

G (w) = P — inw + #w’
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w’/?
Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit Kovtun, Yaffe
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

G (w) = P — inw + #w’
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w’/?
Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit Kovtun, Yaffe

In the large N — oo limit (fix momenta) no nonanalytic behavior:
second-order hydrodynamics
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Second-order hydrodynamics

TH = (e 4+ P)u*u” + Pg"” — nV"*u"’ + terms with two derivatives

There are 16 possible terms with two derivatives.
Assume fundamental theory is a CFT,

™, =0 in flat space
In curved space: Weyl anomaly

9w T" ~ R.,.s  incurved space

But R ~ 0°g,..: Weyl anomaly reproduced in hydrodynamics only at fourth order in
derivatives.
= g, """ = 0 for our purposes

First order: ( = 0,

Second order: tracelessness of T#" reduces to 8 the number of possible
structures in I1#”

Applications of gauge/gravity duality — p.41/47



Conformal invariance
Further constraint: T#" transforms simply under Weyl transformation

2

6
Guv — € g, To — €Ty

8 — 5 possible structures in I1#*

124 124 1 1 %4 174 (@7 1 %4
[ ger = 117 | D™ 4+ 20" (V-u)} e [RW ) 2y, R Wuﬁ]

+ A0 a0 4 Aaa QN £ A 002
D =u4"V,
oM’ = QVWJUV)

O %(vmuw _ vy

~ only in curved space, but affects 2-point function of 7"

A; nonlinear response
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Second-order transport coefficients from AAS/CFT

7. and k can be found similarly to n: using a Kubo’s like formula

® Within hydro: compute some (T**T*") from linear response theory:
response to gravitational perturbations g,z = 1ag + hags

® Compare with AdS/CFT calculations

Example: for momentum ¢ = (w, 0, 0, k) hydrodynamics predicts

(T T™Y(w, k) = P — inw + nrew’ — E(ch + k%)

2
Matching with AAS/CFT calcualation, yields
2—1In2 i
™= Tonr 0 T aT

One can match to the soud-wave dispersion:

I
w=csq—il'q+ —(coTr — %F)q3
c

S

tO flnd the Same Value fOI’ 7-71- . Applications of gauge/gravity duality — p.43/47



Nonlinear coefficientsA; , 3

One needs to look beyond small perturbations around thermal equilibrium.,

A1: can be found from long-time tail of a boost-invariant solution
Janik, Peschanski, Heller

1 2n +
e(T) ~ ~4/3 12 + —8/3 (-6)

Maching the coefficient of =%/2 term:

Ui
A= ——
YT oonT
Bhattacharyya et al. also found
21n 2
M= A= Az =0
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Israel-Stewart theory

In the literature, variations of the Israel-Stewart theory are used

Modified relatiship between I1** and V*u"
(TWUAVA + HIT" = —not”

Frequently terms required by Weyl invariance are thrown away,

(DI + %H“”(V- W)

(but are kept in some papers, e.g., Romatschke & Romatschke). Such terms
may be numerically important.
In addition, A\; = A3 = 0in IS theory; in N/ =4 SYM \; # 0 (but A3 = 0).

Additional terms nonlinear: not important for sound wave propagation, but
Important for Bjorken expansion
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Other transport coefficients

Bulk viscosity:
® Bulk viscosity ¢ nonvanishing in theories with broken conformal symmetry

® In theories with gravity duals, it seems that ¢2 is always less than %
® Parametrically

1
N (§ — ) Buchel
Ui

Diffusion coefficients:
® Conserved charges in a plasma diffuse:

dyp = DV?p

® Diffusion coefficients D can be found by calculating current-current
correlators, which have w = —iDg? poles (and also from a Kubo’s formula)

® For R-charge in N' =4 SYM plasma

D= —
27T
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°

Conclusion

AdS/CFT correspondence can be generalized to finite temperature, real-time

Reveals deep connection between thermal field theory, hydrodynamics and
black hole physics

n/s constant in all theories with Einstein gravity duals
n/s of QGP created at RHIC and LHC not too far from the string-theory value.

At least we now have examples of strongly coupled plasmas that can be
studied analytically
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