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Topics of lectures
Lecture 1: Holography and hydrodynamics

Lecture 2: Anomalies in hydrodynamics

Lecture 3: Nonrelativistic conformal invariance

Lecture 4: Quantum Hall states
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Lecture 1: Holography and hydrodynamics
Hydrodynamics as an efffective theory

Transport coefficients

Gauge/gravity duality
AdS/CFT prescription for real-time field theory
Transport coefficients from AdS/CFT

Applications of gauge/gravity duality – p.3/47



Motivation and Introduction
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Motivation for studying hydrodynamics
Applications: heavy ion collisions etc.
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Motivation for studying hydrodynamics
Applications: heavy ion collisions etc.

Conceptually a much simpler theory than QFT:
Few d.o.f.
Classical: bosonic modes with ω ≪ T
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Why gauge/gravity duality
Practical consideration:

Strong coupling, not treatable by other methods

Simple calculations

Conceptual consideration:

Deep connection between QFT and black-hole physics

sharp contrast to weak coupling:
weak coupling: QFT → kinetic theory → hydro
strong coupling: QFT → hydro
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Original AdS/CFT correspondence
Maldacena; Gubser, Klebanov, Polyakov; Witten

between N = 4 supersymmetric Yang-Mills theory
and type IIB string theory on AdS5× S5

ds2 =
R2

z2
(d~x2 + dz2) +R2dΩ2

5

Large ’t Hooft limit in gauge theory ⇔ small curvature limit in string theory

g2Nc ≫ 1 ⇔ R/ls =
√
α′ R ≫ 1

Correlation function are computable at large ’t Hooft coupling, where string theory
→ supergravity.
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The dictionary of gauge/gravity duality

gauge theory gravity
operator Ô field φ

energy-momentum tensor Tµν graviton hµν

dimension of operator mass of field
globar symmetry gauge symmetry

conserved current gauge field
anomaly Chern-Simon term

... ...

∫

eiS4D+φ0O =

∫

eiS5D

where S5D is computed with nontrivial boundary condition

lim
z→0

φ(~x, z) = φ0(~x)
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Green’s function from AdS/CFT
Compute the correlator of an operator corresponding to a massless scalar φ in the
bulk.
First write down the field equation

∂µ(
√−g gµν∂νφ) = 0

Solution with boundary condition φ → φ0 at z → 0:

φ(z, p) = fp(z)φ0(p),

Here fp(z)e
ipx solves the field equation with b.c. fp(z = 0) = 1.

Substituting to the action:

Scl =

∫

p

φ0(−p)F(p, z)φ0(p)|z→0, F(p, z) =
N2

16π2
z−3f−p(z)f

′
p(z)

Correlator: differentiating Scl with respect to φ0:

〈OO〉p = −2 lim
z→0

F(p, z) ∼ z−3f−p(z)f
′
p(z)
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Finite-temperature AdS/CFT correspondence
Black 3-brane solution:

ds2 =
r2

R2
[−f(r)dt2 + d~x2] +

R2

r2f(r)
dr2 +R2dΩ2

5, f(r) = 1− r40
r4

r0 = 0, f(r) = 1: is AdS5× S5, r = R2/z.

r0 6= 0: corresponds to N = 4 SYM at temperture

T = TH =
r0
πR2

Entropy = A/4G

S =
π2

2
N2

c T
3V3D

This formula has the same N2 behavior as at zero ’t Hooft coupling g2Nc = 0
but the numerical coefficient is 3/4 times smaller.
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Thermodynamics

S = f(g2Nc)
2π2

3
N2

c T
3V3D

where the function f interpolates between weak-coupling and strong-coupling
values, which differ by a factor of 3/4:

f(λ) =







1− 3

2π2
λ+

√
2 + 3

π3
λ3/2 + · · ·, λ ≪ 1

3

4
+

45ζ(3)

32λ3/2
+ · · ·, λ ≫ 1

(0)
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Euclidean correlators
Correlation functions: can be obtained by a finite-temperature version of AdS/CFT:

Z4D[J ] = e−S[φcl]

0
r8r

0

zz0

Due to geometry, correlation functions are periodic in Euclidean time.

Note: fixing the boundary condition at the boundary r = ∞ completely determines
the solution. No separate boundary condition at r = r0 is necessary
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Hydrodynamics
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Hydrodynamics
is the effective theory describing the long-distance, low-frequency behavior
of interacting finite-temperature systems. Hydrodynamic regime

Valid at distances ≫ mean free path, time ≫ mean free time.

At these length/time scales: local thermal equilibrium: T , µ vary slowly in
space.

Simplest example of a hydrodynamic theory: the Navier-Stokes equations

The quark-gluon plasma can be described by a relativistic version of the
Navier-Stokes equation.

All microscopic physics reduces to a small number of kinetic coefficients
(shear viscosity η, bulk viscosity, diffussion coeffecients).
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Relativistic hydrodynamics
Consider a neutral plasma: no conserved charge, except energy and momentum.

Thermodynamics: one variable T

P = P (T ), s =
∂P

∂T
, ǫ = Ts− P

Ideal (zeroth order) hydrodynamics

∇µT
µν = 0 Tµν = (ǫ+ P )uµuν + Pgµν

4 equations for 4 unknowns (T and uµ, u2 = −1).

Viscous hydrodynamics
Tµν = Tµν

ideal + Πµν

︸︷︷︸

viscous stress

Ambiguity of defining uµ beyond leading order: fixed by uµΠ
µν = 0

(“Landau-Lifshitz frame”)
Physical interpretation: in the local rest frame momentum density is zero: T 0i = 0.
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Shear and bulk viscosities
The most general form of the viscous stress is

Πµν = −η∂〈µuν〉 − ζPµν(∂ · u)

Pµν = gµν + uµuν

A〈µν〉 =
1

2
PµαP νβ(Aαβ +Aβα)− 1

3
PµνPαβAαβ

Shear viscosity η and bulk viscosity ζ. Affect damping of shear and sound modes.

In theories with conformal invariance (such as N = 4 SYM theory), Tµ
µ = 0

leads to
ǫ = 3P, ζ = 0
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Linearized hydrodynamics
We linearize around the static solution:

ǫ = ǫ0 + δǫ

P = P0 + δP

u0 = 1 +O(~u2)

~u = ~u ≪ 1

Energy-momentum tensor:

T 00 = ǫ0 + δǫ

T 0i = (ǫ0 + P0)u
i

T ij = (P0 + δP )δij − η(∂iuj + ∂jui)− (ζ − 2
3
η)δij∂ku

k

Linearized hydrodynamic equations:

ωδǫ− (ǫ0 + P0)q
iui = 0

[(ǫ0 + P0)ω + iηq2]ui − qiδP + i(ζ + 1
3
η)qi(~q · ~u) = 0
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Shear modes
Decompse the velocity ~u into longitudinal and transverse parts:

~u = ~u⊥ + ~u‖, ~q · ~u⊥ = 0, ~u‖ ‖ ~q

Equation for transverse modes:

[(ǫ0 + P0) + iηq2]~u⊥ = 0

corresponds to an overdamped shear mode

x

z

v
with dispersion relation

ω = −iDq2, D =
η

ǫ0 + P0
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Sound modes
Longitudinal modes: coupled system of equations for δǫ and u‖:

ωδǫ− (ǫ0 + P0)qu‖ = 0

−q

(
∂P

∂ǫ

)

δǫ+ [(ǫ0 + P0)ω + i(ζ + 4
3
η)q2]u‖ = 0

yields propagating sound waves

ω = ±csq − iΓq2, cs =

(
∂P

∂ǫ

)1/2

, Γ =
1

2

ζ + 4
3
η

ǫ0 + P0

Imaginary part ≪ real part in the limit q → 0.
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Kubo’s Formula
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Kubo’s formula: preliminaries
Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

Example of such perturbation: gravitational waves
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Kubo’s formula: preliminaries
Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

Example of such perturbation: gravitational waves

Long-wavelength ravitational waves induce hydrodynamic perturbations
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Generalization to curved space
To find the response of a hydrodynamic medium to external gravitational
perturbations, one needs to generalize the hydrodynamic equations to
curved spacetime.

Replacing derivative by covariant derivative:

∇µT
µν =

1√−g
∂µ(

√−g Tµν) + Γν
µλT

µλ = 0

τµν = −ηPµαP νβ(∇αuβ +∇βuα) + · · ·
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Linear response theory
Consider a fluid initially in thermal equilibrium: T = T0, uµ = (1,~0).
Let us probe the fluid by a weak metric perturbation:

gµν = ηµν + hµν

Linear response theory:

〈δTµν(x)〉 = −
∫

dy Gµν,αβ
R (x− y)hαβ(y)

where GR is the retarded propagator of Tµν

We can use the hydrodynamic equation to find GR at low momenta
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Kubo’s formula
For simplicity, consider perturbation spatially homogeneous, dependent on time
only:

hxy = hxy(t)

all other components are zero
Spin-2 perturbation: does not excite motion of the fluid: uµ = (1,~0), T = T0.
Nontrivial response from Christofell symbols:

δT xy = −Phxy − η(∇xuy +∇yux)

but

∇iuj = ∂iui
︸︷︷︸

=0

−Γ0
iju0 =

1

2
∂thij

Therefore:
Gxy,xy(ω,~0) = P − iηω

We find Kubo’s formula relating shear viscosity with correlation function:

η = − lim
ω→0

1

ω
ImGxy,xy

R (ω,~0)
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Summary: two-point hydrodynamic correlators
Consider a momentum (ω, 0, 0, q).

Components of Tµν are classified by O(2) in xy directions

Expectation:

Spin-2 components (e.g., T xy): correlators do not show low-momentum
singularity, but imaginary part is tied to shear viscosity through Kubo’s
formula

Spin-1 componets (e.g., T 0x, T zx): correlators show shear-mode pole
ω = −iDq2.

Spin-0 components (e.g., T 00): correlators have sound-wave pole.

Note: all correlators above are real-time correlators.
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Real-Time Finite-Temperature
AdS/CFT
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Real-time correalation functions from AdS/CFT
Naive generalization of AdS/CFT correspondence runs into problem: solution is
not uniquely fixed by the boundary condition at z = 0.

∂µ(
√−g gµν∂νφ) = 0

Two solutions near z = z0:

f± ∼ (z − z0)
±iω/4πT

are both regular.

Correspond to incoming and outgoing waves.

DTS Starinets: pick incoming waves
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Retarded propagator from AdS/CFT
Find the mode function fp(z) with incoming-wave boundary condition at the
horizon

Use the same formula as at zero temperature:

GR ∼ lim
z→0

z−3f−p(z)f
′
p(z)|z→0
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Hydrodynamics
from Gauge/Gravity Duality
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Calculating η from AdS/CFT
First write down equation for φ = hx

y ,

φ′′
p − 1 + u2

uf
φ′
p +

w2 − k2f

uf2
φp = 0, u = z2/z20

where w = ω/2πT , k = q/2πT .

Solution for small w, q:

fp = (1− u2)−iw/2 + · · ·
Applying general formulas for the retarded correlators:

Gxy,xy
R = #u−1f−pf

′
p|u→0

The coefficient # is fixed by the normalization of Hilbert-Einstein action. We find

Gxy,xy
R (ω) = −i

π

8
N2T 3

︸ ︷︷ ︸

η

·ω
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Hydrodynamic poles
One can find poles in the Green’s function that correspond to the shear (ω ∼ −iq2)
and sound modes.
Shear: start with the unperturbed metric

ds2 =
(πTR)2

u
(−f(u)dt2 + d~x2) +

R2

4u2f(u)
du2, f(u) = 1− u2

Assume nonvanishing htx, hzx; momentum along z direction In terms of

Ht =
uhtx

(πTR)2
, Hz =

uhzx

(πTR)2

the field equations are

H ′
t +

kf

w
H ′

z = 0

H ′′
t − 1

u
H ′

t −
wk

uf
Hz − k2

uf
Ht = 0

where k = q/(2πT ) and w = ω/(2πT ).
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Shear pole
Can be converted to one 2nd order equation for H ′

t:

H ′′′
t − 2u

f
H ′′

t +
2uf − k2f + w2

uf2
H ′

t = 0

Boundary condition at u = 1: H ′
t(u) ∼ (1− u)−iw/2 (incoming waves)

The equations can be solved at small ω, q
Boundary action:

Sboundary ∼ 1

u
(Ht(u)H

′
t(u)−Hz(u)H

′
z(u))

∣
∣
∣
∣
u=0

differentiating which one finds the corerlators, e.g.,

Gtx,tx(ω, q) =
πN2T 3

8

q2

iω −Dq2

where

D =
1

4πT
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Hydrodynamic modes (continued)
The value of D extracted from the pole is consistent with

D =
η

ǫ+ P

as required by hydrodynamic equations.

Moreover: the correlator 〈T 00T 00〉 computed from AdS/CFT has a pole
corresponding to sound wave:

ω =
q√
3
− iΓq2

The sound damping rate is also consistent with the calculated η and ζ = 0.

Γ =
1

6πT
=

2

3

η

ǫ+ P
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Viscosity entropy ratio
One can consider other theories with gravity duals

It seems that for each theory one has to compute η again.

However, it turns out to be unnecessary, since the ration η/s can be shown to be
constant across all theories with gravity duals

η

s
=

1

4π
Kovtun, Son, Starinets; Buchel, Liu

One method is to

Use AdS/CFT and Kubo’s formula to map viscosity into of graviton
absorption cross section (by black hole)

Using Einstein equation, show that the absorption cross section is equal to
the area of the horizon

Use Bekenstein’s formula for the entropy S = A/(4G) to show the constancy
of η/s.
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Viscosity/entropy ratio and uncertainty principle
Estimate of viscosity from kinetic theory

η ∼ ρvℓ, s ∼ n =
ρ

m

η

s
∼ mvℓ ∼ ~

mean free path

de Broglie wavelength

Quasiparticles: de Broglie wavelength . mean free path

Therefore η/s & ~

Weakly interacting systems have η/s ≫ ~.

Theories with gravity duals have universal η/s, but we don’t know how to
derive the constancy of η/s without AdS/CFT.

Corrections to η/s computed Buchel, Liu, Starinets; Myers, Paulos, Sinha

η

s
=

1

4π

(

1 +
15ζ(3)

λ3/2
+

5λ1/2

16N2
+ · · ·

)
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Determining viscosity of QGP

Collisions with nonzero impact
parameter

Distribution of particles over
momentum is not axially symmetric:
characterized by “elliptic flow”
parameter v2

explanation: pressure gradient
depends on angle

Viscosity reduces v2

Hydrodynamic simulations can give estimates for η
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Measuring η/s at RHIC
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Gravity/hydrodynamics correspondence
Starting from a black-brane solution, i.e.,

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2, f = 1− r4

r40

Construct a family of configurations by changing T ∼ r0/R
2 and boosting

along ~x directions by velocity ~u

gµν = gµν(z;T, u
µ)

Promote T and ~u into fields.

Require regularity away from r = 0 ⇒ hydrodynamic equations

Bhattacharyya, Hubeny, Minwala, Rangamani
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Second-Order Hydrodyamics
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Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?
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Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω +#ω2
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Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω +#ω2

Howerver it turns out that the correction after η is nonanalytic:

Gxy,xy(ω) = P − iηω +#ω3/2

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit Kovtun, Yaffe

In the large N → ∞ limit (fix momenta) no nonanalytic behavior:
second-order hydrodynamics
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Second-order hydrodynamics

Tµν = (ǫ+ P )uµuν + Pgµν − η∇〈µuν〉 + terms with two derivatives

There are 16 possible terms with two derivatives.
Assume fundamental theory is a CFT,

Tµ
µ = 0 in flat space

In curved space: Weyl anomaly

gµνT
µν ∼ R2

µναβ in curved space

But R ∼ ∂2gµν : Weyl anomaly reproduced in hydrodynamics only at fourth order in
derivatives.

⇒ gµνT
µν = 0 for our purposes

First order: ζ = 0,

Second order: tracelessness of Tµν reduces to 8 the number of possible
structures in Πµν
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Conformal invariance
Further constraint: Tµν transforms simply under Weyl transformation

gµν → e2ωgµν , Tµν → e6ωTµν

8 → 5 possible structures in Πµν

Πµν
2nd order = ητπ

[

〈Dσµν〉 +
1

3
σµν(∇· u)

]

+ κ
[

R〈µν〉 − 2uαR
α〈µν〉βuβ

]

+ λ1σ
〈µ

λσ
ν〉λ + λ2σ

〈µ
λΩ

ν〉λ + λ3Ω
〈µ

λΩ
ν〉λ

D ≡ uµ∇µ

σµν = 2∇〈µuν〉

Ωµν =
1

2
(∇〈µuν〉 −∇〈νuµ〉) vorticity

κ only in curved space, but affects 2-point function of Tµν

λi nonlinear response
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Second-order transport coefficients from AdS/CFT
τπ and κ can be found similarly to η: using a Kubo’s like formula

Within hydro: compute some 〈TµνTαβ〉 from linear response theory:
response to gravitational perturbations gαβ = ηαβ + hαβ

Compare with AdS/CFT calculations

Example: for momentum q = (ω, 0, 0, k) hydrodynamics predicts

〈T xyT xy〉(ω, k) = P − iηω + ητπω
2 − κ

2
(ω2 + k2)

Matching with AdS/CFT calcualation, yields

τπ =
2− ln 2

2πT
, κ =

η

πT

One can match to the soud-wave dispersion:

ω = csq − iΓq +
Γ

cs
(c2sτπ − 1

2
Γ)q3

to find the same value for τπ. Applications of gauge/gravity duality – p.43/47



Nonlinear coefficientsλ1,2,3

One needs to look beyond small perturbations around thermal equilibrium.
λ1: can be found from long-time tail of a boost-invariant solution
Janik, Peschanski, Heller

ǫ(τ) ∼ 1

τ4/3
− 2η

τ2
+

#

τ8/3
(-6)

Maching the coefficient of τ−8/3 term:

λ1 =
η

2πT

Bhattacharyya et al. also found

λ1 =
η

2πT
, λ2 = −2 ln 2

2πT
η, λ3 = 0
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Israel-Stewart theory
In the literature, variations of the Israel-Stewart theory are used

Modified relatiship between Πµν and ∇µuν

(τπu
λ∇λ + 1)Πµν = −ησµν

Frequently terms required by Weyl invariance are thrown away,

〈DΠµν〉 +
4

3
Πµν(∇· u)

(but are kept in some papers, e.g., Romatschke & Romatschke). Such terms
may be numerically important.

In addition, λ1 = λ3 = 0 in IS theory; in N = 4 SYM λ1 6= 0 (but λ3 = 0).

Additional terms nonlinear: not important for sound wave propagation, but
important for Bjorken expansion
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Other transport coefficients
Bulk viscosity:

Bulk viscosity ζ nonvanishing in theories with broken conformal symmetry

In theories with gravity duals, it seems that c2s is always less than 1
3

Parametrically
ζ

η
∼ (

1

3
− c2s) Buchel

Diffusion coefficients:

Conserved charges in a plasma diffuse:

∂tρ = D∇2ρ

Diffusion coefficients D can be found by calculating current-current
correlators, which have ω = −iDq2 poles (and also from a Kubo’s formula)

For R-charge in N = 4 SYM plasma

D =
1

2πT
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Conclusion
AdS/CFT correspondence can be generalized to finite temperature, real-time

Reveals deep connection between thermal field theory, hydrodynamics and
black hole physics

η/s constant in all theories with Einstein gravity duals

η/s of QGP created at RHIC and LHC not too far from the string-theory value.

At least we now have examples of strongly coupled plasmas that can be
studied analytically
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