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In the previous 2 lectures :

• We have seen, so far, the failure of finding a single Type 
IIA meta-stable de-Sitter vacuum. 

• We argue that the number of meta-stable de-Sitter vacua 
in string theory is a lot fewer than naively expected.

• However, we probably still expect a good number of such 
local minima in the Landscape. We argue that tunneling 
can be much faster than naively expected.

• In the He-3 superfluid system, experiments have shown 
that the exponent in the tunneling rate is about 6 orders of 
magnitude bigger than that predicted by theory. 



Eternal Inflation

• Suppose our universe sits in a meta-stable de-Sitter 
vacuum for time T.

2 THE AUTHOR

What is eternal inflation ?

a(t) ⇠ eHt

H2 ⇠ 1/G⇤

Consider a patch of size 1/H.

Suppose T ⇠ 3/H.

The universe would have grown by a factor of e3·3 = e9.
If inflation ends in one patch, there are still many other

(causally disconnected) patches which continue to inflate.

So inflation never ends.



Eternal Inflation

• A very simple and elegant scenario

• With the original picture of Bousso-Polchinski and KKLT, it 
seems unavoidable that the wavefunction will sit at some point 
in the Landscape

• Naively it implies that most of the universe is still undergoing 
eternal inflation today, so our observable universe is a tiny tiny 
part of the whole universe

• No matter how suppressed, parts of the universe can tunnel to 
other vacua, both with higher and lower CC. So the whole 
Landscape is “populated”.



Eternal Inflation

• We need a strong version of the Anthropic principle to 
explain our presence. 

• If there are say10500 vacua, there’ll be many vacua 
extremely similar to ours. Among these many very similar 
vacua, we cannot tell which one we live in. In this sense, 
we’ll lose predictive power.

• The question of measure cannot really be resolved since 
there is no global time.  



Can we avoid eternal inflation ?

• Based on what we discussed in the previous 2 
lectures, I argue that eternal inflation is not only 
avoidable, it is unlikely.

• Since we know little about the potential of the 
Landscape, except that it is very large and 
complicated, is there much we can say about it ?

• In this lecture, I like to argue “yes”.

• This lecture is partly based on hep-th/0611148 and 
0708.4374.



Strategy :

• Treat the landscape as a d-dimensional random 
potential

• Use the scaling theory developed for random potential 
(disordered medium) in condensed matter physics

• justify the key points of the above scenario

• do a renormalization group analysis on the mobility of 
the wavefunction of our universe

• calculate some of the properties of the landscape, e.g., 
the critical CC

• argue why we should end up in a vacuum with an very 
small C.C.



Condensed matter physics want to understand when a 
sample is conducting or insulating.

When conducting, the charge carriers are mobile.
When insulating, the charge carriers are localized.
They study this behavior for a random potential.

For us, the landscape is the random potential.
The wavefunction of a charge carrier becomes 

the wavefunction of the universe. 

A localized or trapped wavefunction will imply eternal inflation.

We like to learn when it is trapped and when it is mobile



We like to see :

There is a critical CC, which is exponentially small.
 

At sites with CC larger than this critical value, the 
wavefunction of the universe is mobile.

 
At sites with CC smaller than this critical value, the 

wavefunction of the universe is isolated, with 
exponentially long lifetime.

The transition at this critical CC is sharp.

Mobility at high CC and trapped at very low CC.



Anderson localization transition

• random potential/disorder medium

• insulation-superconductivity transition

• quantum mesoscopic systems

• conductivity-insulation in disordered 
systems

• percolation

• strongly interacting electronic systems

•  high Tc superconductivity

•   . . . . . . . . .
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Define a dimensionless conductance g in a d-dim. 
hypercubic region of macroscopic size L

is an unstable fixed point, implying that the transition between mobility and localization
is a sharp one.

Consider a specific (enveloping) wavefunction ⇤(r) � e�|r|/� at site r = 0 with a typical
⇥ in the cosmic landscape (see Figure 1(b)). The wavefunction seems to be completely
localized at the site if the localization length ⇥ ⇥ a, where ⇥ measures the size of the
site and a is the typical spacing between sites. They are determined by local properties
and ⇥ is known as the localization length. With resonance tunneling, ⇥ can be somewhat
bigger, although ⇤(r) may still be exponentially suppressed at distance a. At distance
scales around a, the conductance goes like

g(a) � |⇤(a)| � e�a/� (1.3)

Note that, for a⇤ ⇥, �0 � |⇤(a)|2 � e�2a/�.
Given g = g(a) (1.3) at scale a, what happens to g at distance scales L⇤ a ? That is,

how does g scale ? The scaling theory of g is well studied in condensed matter physics. It
turns out that there is a critical conductance gc which is a function of d. If g(a) < gc, then
g(L) � e�L/� ⌅ 0 as L⌅⌃ and the landscape is an insulating medium. The wavefunction
is truly localized. Tunneling will take exponentially long and eternal inflation comes into
play. If g(a) > gc, the conductivity is finite (g(L) � (L/a)(d�2)) as L ⌅ ⌃ and the
landscape is in a conducting/mobile phase. The wavefunction is free to move. Around the
transition point, there is a correlation length that blows up at the phase transition. We
shall see that, at length scale a, this correlation length can be identified with ⇥. That is, ⇥

plays the role of the correlation length. This is how, given g(a) (1.3) at scale a, g can grow
large for large L.

In this paper, we argue that, for large d, the critical conductance is exponentially small,

gc ⇧ e�(d�1)

So it is not di⌃cult for g(a) > gc; given g(a) (1.3), we see that fast tunneling happens
when �0 > e�2(d�1), or

d >
a

⇥
+ 1 (1.4)

so the wavefunction of the universe can move freely in the quantum landscape even for
an exponentially small g(a). Since the �-function has a positive slope at the localization
transition point (implying an unstable fixed point), the transition between the insulating
(localization) phase and the conducting (mobile) phase is sharp. We see that it is precisely
the vastness of the cosmic landscape (as parameterized by a large d) that allows mobility
even if the wavefunction is localized. This mobility allows the wavefunction to sample
the landscape very quickly. It also means a semi-classical description of the landscape is
inadequate.

In the mobility phase, the wavefunction and/or the D3-branes (and moduli) move
down the landscape to a site with a smaller ⇥. At that site, some of its neighboring sites
have larger ⇥s, so the e⇤ective a increases, leading to a larger e⇤ective critical conductance
gc. This happens until the condition (1.4) is no longer satisfied and the D3-brane is stuck
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of the order of ⇤. Then one expects that for L ⌅ ⇤, the e�ective conductance becomes
exponentially small:

gd(L) ⇤ e�L/� (2.2)

For a small disorder, the medium is in a metallic state and the conductivity ⌅ is independent
of the sample size if the size is much larger than the mean free path, L⌅ l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
we have:

gd(L) = ⌅Ld�2 (2.3)

based on a simple dimensional argument. (Recall that in d = 3, g = ⌅(Area)/L ⇤ ⌅L.)
The conductance g = g(a) at length scale a is a microscopic measure of the disorder. We
see that g(L) may end up with one of the 2 very di�erent asymptotic forms for L ⌅ a.
Here ⌅ is rescaled so that g is dimensionless.

Elementary scaling theory of localization assumes that g of a d-dimensional hypercube
of size L satisfies the simplest di�erential equation of a renormalization group, where

⇥d(gd(L)) =
d ln gd(L)

d lnL
(2.4)

that is, the ⇥-function ⇥d(g) depends only on the dimensionless conductance gd(L). Then
the qualitative behavior of ⇥d(g) can be analyzed in a simple way by interpolating it between
the 2 limiting forms given by Eq.(2.2) and Eq.(2.3). For the insulating phase, (g ⇧ 0), it
follows from Eq.(2.2) and Eq.(2.4) that :

lim
g⇥0

⇥d(g)⇧ ln
g

gc
(2.5)

which is negative for g ⇧ 0. For the conducting phase (large g), it follows from Eq.(2.3)
and Eq.(2.4) that :

lim
g⇥⇤

⇥d(g)⇧ d� 2 (2.6)

which is positive for d > 2. Assuming the existence of two perturbation expansions over
the “coupling” g in the limits of weak and strong “couplings”, one can write corrections to
Eq.(2.5) and Eq.(2.6) in the following form :

⇥d(g ⇧ 0) = ln
g

gc
(1 + bdg + · · · ) (2.7)

⇥d(g ⇧⌃) = d� 2� �d

g
+ · · · �d > 0 (2.8)

Assuming these and a smooth monotonous ⇥d(g), it is easy to plot the ⇥-function qualita-
tively for all g and d, as shown in Figure 2.

For d > 2, ⇥d(g) must have a zero: ⇥d(gc) = 0, where gc is the critical conductance.
The slope at the zero is positive, so this zero of ⇥d(g) corresponds to an unstable fixed point
of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very di�erent behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.
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Conducting/mobile (metalic) with finite conductivity
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the particle is scattered randomly and its wavefunction usually changes at the scale of
the order l. However, the wavefunction remains extended plane-wave-like (Bloch wave-
like) through the medium. If the wavefunction is initially localized at some site, it would
quickly spread and move towards low potential sites. This mobility implies that the system
is a “conductor”.

Anderson [19] showed that the wave function of a quantum particle in a random poten-
tial can qualitatively change its nature if the randomness becomes large enough (strongly
disordered). In this case, the wavefunction becomes localized, so that its amplitude (enve-
lope) drops exponentially with distance from the center of localization r0:

|⇥(r)| ⇤ exp(�|r� r0|/�) (2.1)

where � is the localization length. This situation is shown qualitatively in Figure 1. When
the particle wavefunction is completely localized at a single site, � approaches a value
comparable to the typical spacing a between sites. In d ⇥ 3, it will take an exponentially
long time to tunnel to a neighboring site. The lack of mobility implies that the system is
an “insulator”.

The physical meaning of Anderson localization is relatively simple: coherent tunneling
of particles is possible only between energy levels with the same energy. However, in case
of strong randomness, l⌃ a and the states with the same energy are too far apart in space
for tunneling to be e�ective. Since we are interested in large d, while condensed matter
physics systems typically have d ⇥ 3, we shall introduce a slightly refined definition here :
(1) an extended state if � ⇧ a, as shown in Figure 1(a);
(2) a weakly localized state if � � a, as shown in Figure 1(b);
(3) a localized state if � < a, as shown in Figure 1(c);
(4) a strongly localized state when � ⌅ a. As we shall see, for large d, a strongly localized
state can still lead to mobility if it satisfies the condition (1.4). When this condition is not
satisfied, we have
(5) a truly localized state.
For d ⇥ 3, a weakly localized state will have lost mobility already (although it is believed
that, under the right conditions, superconductivity can take place in the localization re-
gion). That a strongly localized state may still lead to mobility for large d is not surprising.
For large d, the particle has many directions for coherent or resonant tunneling. In a ran-
dom potential environment, it is much more likely that some direction allows easy motion.
The goal is to quantify this intuition. We shall continue to use the language of condensed
matter physics : a is the microscopic scale while L is the macroscopic scale.

For fixed d, we expect a transition from a “conductor” to an “insulator” as the potential
barriers rise and fast tunneling is suppressed. To learn more about this transition, we
should focus on the behavior of the conductivity, or, more appropriately, the conductance.
It turns out that the behavior of such a transition can be described by a scaling theory
similar to that used in the theory of critical phenomena [20]. In the scaling theory of the
transition between mobility and localization, one considers the behavior of the conductance
as a function of the sample size L. Dimensionally, we shall choose some microscopic units
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How does g scale ?
Given g at scale a, what is g at scale L 

as L becomes large ?

of the order of ⇤. Then one expects that for L ⌅ ⇤, the e�ective conductance becomes
exponentially small:

gd(L) ⇤ e�L/� (2.2)

For a small disorder, the medium is in a metallic state and the conductivity ⌅ is independent
of the sample size if the size is much larger than the mean free path, L⌅ l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
we have:

gd(L) = ⌅Ld�2 (2.3)

based on a simple dimensional argument. (Recall that in d = 3, g = ⌅(Area)/L ⇤ ⌅L.)
The conductance g = g(a) at length scale a is a microscopic measure of the disorder. We
see that g(L) may end up with one of the 2 very di�erent asymptotic forms for L ⌅ a.
Here ⌅ is rescaled so that g is dimensionless.

Elementary scaling theory of localization assumes that g of a d-dimensional hypercube
of size L satisfies the simplest di�erential equation of a renormalization group, where

⇥d(gd(L)) =
d ln gd(L)

d lnL
(2.4)

that is, the ⇥-function ⇥d(g) depends only on the dimensionless conductance gd(L). Then
the qualitative behavior of ⇥d(g) can be analyzed in a simple way by interpolating it between
the 2 limiting forms given by Eq.(2.2) and Eq.(2.3). For the insulating phase, (g ⇧ 0), it
follows from Eq.(2.2) and Eq.(2.4) that :

lim
g⇥0

⇥d(g)⇧ ln
g

gc
(2.5)

which is negative for g ⇧ 0. For the conducting phase (large g), it follows from Eq.(2.3)
and Eq.(2.4) that :

lim
g⇥⇤

⇥d(g)⇧ d� 2 (2.6)

which is positive for d > 2. Assuming the existence of two perturbation expansions over
the “coupling” g in the limits of weak and strong “couplings”, one can write corrections to
Eq.(2.5) and Eq.(2.6) in the following form :

⇥d(g ⇧ 0) = ln
g

gc
(1 + bdg + · · · ) (2.7)

⇥d(g ⇧⌃) = d� 2� �d

g
+ · · · �d > 0 (2.8)

Assuming these and a smooth monotonous ⇥d(g), it is easy to plot the ⇥-function qualita-
tively for all g and d, as shown in Figure 2.

For d > 2, ⇥d(g) must have a zero: ⇥d(gc) = 0, where gc is the critical conductance.
The slope at the zero is positive, so this zero of ⇥d(g) corresponds to an unstable fixed point
of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very di�erent behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.
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of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very di�erent behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.

– 8 –

Insulating, localized,
trapped, eternal inflation

Conducting, 
mobile



of the order of ⇤. Then one expects that for L ⌅ ⇤, the e�ective conductance becomes
exponentially small:

gd(L) ⇤ e�L/� (2.2)

For a small disorder, the medium is in a metallic state and the conductivity ⌅ is independent
of the sample size if the size is much larger than the mean free path, L⌅ l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
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What is eternal inflation ?

a(t) ⇠ eHt

H2 ⇠ 1/G⇤

Consider a patch of size 1/H.

Suppose T ⇠ 3/H.

The universe would have grown by a factor of e3·3 = e9.
If inflation ends in one patch, there are still many other

(causally disconnected) patches which continue to inflate.

So inflation never ends.

g ⇠ e�Ln

�(g) ⇠ n ln(g/gc)





A simple way to get a feeling of this

and Fl(x0, ξ) gets complicated for large l. One can solve Eq.(A.6) numerically. For fixed

x0 = k0R, a solution to Eq.(A.6) yields the bound state with energy E = −k2
0(1−ξ2)/(2m).

In the d = 1 case, there is always at least one bound state. In the d = 3 case, there

is no bound state if x0 < π/2. For large (odd) d, one finds that there is no bound state

solution if x0 = k0R is less than a critical value Pc,

k0R < Pc Pc " 0.58d + 0.5 (A.8)

We see that a larger and deeper potential is needed to trap the particle as d increases. For

a potential barely strong enough to trap the particle, i.e., k0R ! Pc, we see that ξ " 1 and

aR is very small. So its wavefunction ψ(r) ∼ e−ar spreads to r $ R and its tunneling to

a neighboring site can be fast. (Instead of k0R, one may consider k0R̄, where R̄d = V (d),

where V (d) is the volume of the potential. In this case, the bound becomes, for large d,

P̄c " Pc

√

2eπ/d " 2.4
√

d.)

If the particle has kinetic energy, binding will be further suppressed. However, even

without binding, the particle will be scattered by the attractive potential. For a theory

with a single scale, like string theory, the dimensionless quantity k0R should be of order

unity. In the presence of warped geometry, where a hierarchy of scales appears, one may

expect that other possibilities are easy to find. However, since k0R is dimensionless, it is

likely that it stays unwarped, even if R and k0 are warped. Of course, this feature should

be checked in explicit examples.

This quantum mechanical example provides an intuitive understanding why mobility

is likely in the vast landscape: many of the classically stable local minima may not be able

to trap the wavefunction. For other sites, the binding may be so weak that the bound state

wavefunction has a long tail and so its tunneling out of it to a nearby site with a lower

Λ can be fast. Comparing ψ(r) ∼ e−ar to Eq.(2.1), we see that ξ ∼ 1/a. The tunneling

probability goes like e−2as, where s is the separation between the 2 local minima. For a

classical local minimum that is too weak to bind, namely an unstable vacuum, a becomes

pure imaginary : Re(a) = 0. This is the limiting case of fast tunneling: that is, the lifetime

of this vacuum is zero.

B. Effect on tunneling due to a change in mass (or brane tension)

In the quantum mechanical example in Appendix A, we see that binding is stronger for

a more massive particle. Also, the exponential damping of a bound state wavefunction is

stronger for a larger mass. It follows that tunneling is suppressed as the mass increases.

Here we consider tunneling for a scalar field with similar results.

Following [20], let us start with the effective Langrangian density

L =
1

2
∂µφ∂

µφ− U(φ) (B.1)

U(φ) =
λ

8

(

φ2 −
µ2

λ

)2

+
ε

2a
(φ− a) + Λp (B.2)
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Recall that there is a bound state for a 1-dim attractive delta 
potential, but no bound state in the 3-dim case.

A spherical square-well attractive potential in QM :

Bound State Condition 
in d-dim QM

GQ Huang





Figure 2: The �-function of the dimensionless conductance g, �d(g) versus ln g, for di�erent values
of g and d. The cases for d < 2, d = 2 and d = 3, 4, 5, 6 are shown. For g ⇧ 0, �d(g) is linear in
ln g, and �d(g) ⇧ d � 2 as g ⇧ ⌃. There is no fixed point for d < 2. For d > 2, there is always
a fixed point (the zero of the �-function at g = gc(d)) and the slope at the fixed point is positive.
For large d, the spacings of the fixed points for adjacent d values are approximately equal in ln g.

The state of a medium is supposedly determined by disorder at microscopic distances
of the order of typical spacing a between neighboring sites. Using g(a) as an initial value
and integrating Eq.(2.4), it is easy to find its properties for the 2 cases :
• For g(a) > gc, the conductivity ⇤ = g(L)L2�d tends for L ⇧ ⌃ to a constant non-zero
value.
• For g(a) < gc in the limit of L⇧⌃ we get insulating behavior; that is, ⇤ = 0.
We see that the behavior of �d(g) close to its zero determines the critical behavior at the
transition. There is a sharp transition for g(a) larger or smaller than gc.

For g ⇤ gc, �d(g) is linear in ln g (see Figure 2), so we have the following approximation:

�d(g) ⌅ 1
⇥

ln
g

gc
⌅ 1

⇥

g � gc

gc
(2.9)

where 1/⇥ is positive and is equal to the bracket part of Eq.(2.7) evaluated at gc. First we
consider the case where g(a) > gc. Since �d(g) > 0, the flow is to large g, so we integrate
Eq.(2.4) to find g(L). We can approximate the integral by first integrating Eq.(2.4) using
Eq.(2.9) until �d(g) reaches d� 2 at g⇥, then we use �d(g) = d� 2 (Eq.(2.6)) to reach large
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of the order of ⇤. Then one expects that for L ⌅ ⇤, the e�ective conductance becomes
exponentially small:

gd(L) ⇤ e�L/� (2.2)

For a small disorder, the medium is in a metallic state and the conductivity ⌅ is independent
of the sample size if the size is much larger than the mean free path, L⌅ l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
we have:

gd(L) = ⌅Ld�2 (2.3)

based on a simple dimensional argument. (Recall that in d = 3, g = ⌅(Area)/L ⇤ ⌅L.)
The conductance g = g(a) at length scale a is a microscopic measure of the disorder. We
see that g(L) may end up with one of the 2 very di�erent asymptotic forms for L ⌅ a.
Here ⌅ is rescaled so that g is dimensionless.

Elementary scaling theory of localization assumes that g of a d-dimensional hypercube
of size L satisfies the simplest di�erential equation of a renormalization group, where

⇥d(gd(L)) =
d ln gd(L)

d lnL
(2.4)

that is, the ⇥-function ⇥d(g) depends only on the dimensionless conductance gd(L). Then
the qualitative behavior of ⇥d(g) can be analyzed in a simple way by interpolating it between
the 2 limiting forms given by Eq.(2.2) and Eq.(2.3). For the insulating phase, (g ⇧ 0), it
follows from Eq.(2.2) and Eq.(2.4) that :

lim
g⇥0

⇥d(g)⇧ ln
g

gc
(2.5)

which is negative for g ⇧ 0. For the conducting phase (large g), it follows from Eq.(2.3)
and Eq.(2.4) that :

lim
g⇥⇤

⇥d(g)⇧ d� 2 (2.6)

which is positive for d > 2. Assuming the existence of two perturbation expansions over
the “coupling” g in the limits of weak and strong “couplings”, one can write corrections to
Eq.(2.5) and Eq.(2.6) in the following form :

⇥d(g ⇧ 0) = ln
g

gc
(1 + bdg + · · · ) (2.7)

⇥d(g ⇧⌃) = d� 2� �d

g
+ · · · �d > 0 (2.8)

Assuming these and a smooth monotonous ⇥d(g), it is easy to plot the ⇥-function qualita-
tively for all g and d, as shown in Figure 2.

For d > 2, ⇥d(g) must have a zero: ⇥d(gc) = 0, where gc is the critical conductance.
The slope at the zero is positive, so this zero of ⇥d(g) corresponds to an unstable fixed point
of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very di�erent behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.
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and integrating Eq.(2.4), it is easy to find its properties for the 2 cases :
• For g(a) > gc, the conductivity ⇤ = g(L)L2�d tends for L ⇧ ⌃ to a constant non-zero
value.
• For g(a) < gc in the limit of L⇧⌃ we get insulating behavior; that is, ⇤ = 0.
We see that the behavior of �d(g) close to its zero determines the critical behavior at the
transition. There is a sharp transition for g(a) larger or smaller than gc.

For g ⇤ gc, �d(g) is linear in ln g (see Figure 2), so we have the following approximation:

�d(g) ⌅ 1
⇥

ln
g
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⌅ 1

⇥

g � gc

gc
(2.9)

where 1/⇥ is positive and is equal to the bracket part of Eq.(2.7) evaluated at gc. First we
consider the case where g(a) > gc. Since �d(g) > 0, the flow is to large g, so we integrate
Eq.(2.4) to find g(L). We can approximate the integral by first integrating Eq.(2.4) using
Eq.(2.9) until �d(g) reaches d� 2 at g⇥, then we use �d(g) = d� 2 (Eq.(2.6)) to reach large
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of the order of ⇤. Then one expects that for L ⌅ ⇤, the e�ective conductance becomes
exponentially small:

gd(L) ⇤ e�L/� (2.2)

For a small disorder, the medium is in a metallic state and the conductivity ⌅ is independent
of the sample size if the size is much larger than the mean free path, L⌅ l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
we have:

gd(L) = ⌅Ld�2 (2.3)

based on a simple dimensional argument. (Recall that in d = 3, g = ⌅(Area)/L ⇤ ⌅L.)
The conductance g = g(a) at length scale a is a microscopic measure of the disorder. We
see that g(L) may end up with one of the 2 very di�erent asymptotic forms for L ⌅ a.
Here ⌅ is rescaled so that g is dimensionless.

Elementary scaling theory of localization assumes that g of a d-dimensional hypercube
of size L satisfies the simplest di�erential equation of a renormalization group, where

⇥d(gd(L)) =
d ln gd(L)

d lnL
(2.4)

that is, the ⇥-function ⇥d(g) depends only on the dimensionless conductance gd(L). Then
the qualitative behavior of ⇥d(g) can be analyzed in a simple way by interpolating it between
the 2 limiting forms given by Eq.(2.2) and Eq.(2.3). For the insulating phase, (g ⇧ 0), it
follows from Eq.(2.2) and Eq.(2.4) that :

lim
g⇥0

⇥d(g)⇧ ln
g

gc
(2.5)

which is negative for g ⇧ 0. For the conducting phase (large g), it follows from Eq.(2.3)
and Eq.(2.4) that :

lim
g⇥⇤

⇥d(g)⇧ d� 2 (2.6)

which is positive for d > 2. Assuming the existence of two perturbation expansions over
the “coupling” g in the limits of weak and strong “couplings”, one can write corrections to
Eq.(2.5) and Eq.(2.6) in the following form :

⇥d(g ⇧ 0) = ln
g

gc
(1 + bdg + · · · ) (2.7)

⇥d(g ⇧⌃) = d� 2� �d

g
+ · · · �d > 0 (2.8)

Assuming these and a smooth monotonous ⇥d(g), it is easy to plot the ⇥-function qualita-
tively for all g and d, as shown in Figure 2.

For d > 2, ⇥d(g) must have a zero: ⇥d(gc) = 0, where gc is the critical conductance.
The slope at the zero is positive, so this zero of ⇥d(g) corresponds to an unstable fixed point
of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very di�erent behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.
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What is the critical gc ?

Now we have:
⇥d(g ⇥ gc) ⇤ (d� 2)

�
g(a)� gc

gc

⇥
(2.18)

and for the critical exponent of localization length in Eq.(2.16), we get :

⌅ ⇤ 1
d� 2

(2.19)

which may be considered as the first term of the ⇤-expansion from d = 2 (where ⇤ = d� 2),
i.e., near “lower critical dimension” for localization.

We see from Eq.(2.17) that gc depends on �d, which is clearly model-dependent. For
a Fermi gas with spin-1/2 particles in 3-dimensions (d = 3), �3 = ⇧�2, so gc ⇤ 1/⇧2 [23].
Here we are interested in gc’s dependence on d for large d.

For tunneling in the landscape to be fast when above the transition, it would mean that
the critical conductance gc for large d ⇤ 102 should be exponentially small. That is, the
landscape should be in the conducting phase even for an exponentially small microscopic
conductance g(a). Noting that gc ⇥ 1 for d = 3., we see that gc as a function of d should
decrease exponentially. A glance of Figure 2 suggests that the zeros of ⇥d (as a function of
d) are approximately equally spaced in ln g, implying that gc should decrease exponentially
as a function of d. If we let

� ln gc = ln gc(d)� ln gc(d + 1) = k > 0 (2.20)

we can express gc(d) in terms of gc(3) (for d = 3),

gc(d) ⌅ e�(d�3)kgc(3) (2.21)

A simple glance at Figure 2 suggests that k ⇥ 1. To be more specific, we like to know
quantitatively the dependence of gc on d. It is likely that this specific qualitative property
is insensitive to the details of any particular model. In the next section, we shall examine
a simple model to obtain the quantitative dependence of gc on d.

3. Exponentially Small Critical Conductances

Consider a lattice model of d-dimensional disordered system studied by Shapiro [22]. Since
we are interested in the asymptotic behavior of gc as a function of d, where this qualitative
feature should be universal, the details of the model does not concern us. We may view
this model as a simple interpolation that satisfies all the general properties expected.

3.1 A Simple Model

The corresponding ⇥-function in the Shapiro model is given by

⇥d(g) = (d� 1)� (g + 1) ln(1 + 1/g) (3.1)

Recall that the critical conductance gc is given by the zero of the ⇥-function. It is
easy to see that the system has a non-trivial fixed point only for d > 2, just as before. For
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g ⇧ 0, ⇥d(g) ⇧ ln(g/gc), reproducing Eq.(2.5). For g ⇧ ⌃, ⇥d(g) ⇧ d � 2, reproducing
Eq.(2.6). The critical exponent can be expressed in terms of gc,

⌅ =
1 + gc

1� (d� 2)gc
(3.2)

In the ⇤-expansion, for small ⇤ = d � 2 > 0, one solves for the zero of the ⇥-function
(3.1) to obtain gc = 1/2⇤. Then Eq.(3.2) recovers the value of the critical exponent ⌅ = 1/⇤

in Eq.(2.19). We see that this is a simple model that reproduces the appropriate features
expected.

Comparing to Eq.(2.17), it gives �2 ⌅ 1/2. For d = 3, a numerical analysis of this
model yields gc = 0.255 and ⌅ = 1.68. This value for the critical exponent ⌅ is higher
than that in Eq.(2.19) for d = 3 from the ⇤-expansion. However, this value is compatible
with the estimate of 1.25 < ⌅ < 1.75 [31], suggesting that the leading ⇤-expansion is rather
crude for ⇤ = 1.

For large d, we find the zero of the ⇥-function is given by

gc = e�(d�1) (3.3)

that is, gc is exponentially small for large d, and

⌅ ⇧ 1 (3.4)

so we obtain the desired behavior for the critical conductance gc. Comparing (3.3) to the
microscopic property (1.3) leads to the conductng/mobile condition (1.4) for large d. Recall
that the typical tunneling probability between 2 neighboring sites is �0 ⇤ e�2a/�, we see
that the mobility condition is, for large d,

�0 > e�2(d�1) (3.5)

that is, an exponentially small tunneling probability can still lead to the conducting phase,
that is, mobility for the wavefunction.

3.2 Disorder with Percolation

This above model corresponds to a microscopically (i.e., at scales � a) random medium
but homogeneous at a larger scale. The cosmic landscape probably looks random even at
scales beyond a. To mimic the cosmic landscape, one may introduce additional randomness
at scales larger than a but still smaller than the macroscopic scale L. This scale can be
macroscopic, or intermediate, which is some times referred to as the mesoscopic scale. Let
us introduce disorder at this scale. This may be mimicked by the more general Shapiro
model that actually considers localization in a macroscopically inhomogeneous medium,
with percolation disorder. Percolation can be incorporated into the above model by intro-
ducing a probability p (1 ⇥ p ⇥ 0) that a typical site is occupied by a random scatterer, or
if a path remains open for e⇤cient tunneling. Now, ⇥d(g) ⇧ ⇥g(g, p) becomes a function
of p as well,

⇥g(g, p) = (d� 1)
�

1 +
1� p

p
ln(1� p)

⇥
� (g + 1) ln(1 + 1/g) (3.6)
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A generalization to include percolation
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where the running of p is given by

�p(p) =
⌦p

⌦ lnL
= p ln p� (d� 1)(1� p) ln(1� p) (3.7)

In this simple model, we see that �p is independent of g. Here, it is easy to see that p = 1
is a fixed point since �p(p = 1) = 0. At this fixed point, �g(g, p) (3.6) reduces to the above
�-function (3.1). In general, gc is a now a function of both p and d. For any given p, we
see that �g(g, p) is simply given by �d(g) (3.1) with d replaced by an e�ective dp which is
a function of p,

dp = 1 + (d� 1)
�

1 +
1� p

p
ln(1� p)

⇥
(3.8)

so, for large d, we now have

gc(p) = e�(dp�1) (3.9)

That is, the condition (1.4) for fast tunneling now becomes

dp >
a

⌅
+ 1 (3.10)

and the critical exponent ⇤ for �g becomes

⇤g =
1 + gc

1� (dp � 2)gc
(3.11)

Let us consider the zeros of �p(p) at p = pc, where pc satisfies

pc ln pc = (d� 1)(1� pc) ln(1� pc) (3.12)

For d ⇥ 2, there are 3 fixed points, which we shall label as p1 = 0, p2 and p3 = 1 : besides
the 2 fixed points, namely p1 = 0 and p3 = 1, there is another fixed point at p = p2 in
between; that is, p3 > p2 > p1 or 1 > p2 > 0. For d = 2, it is easy to see that p2 = 1/2.
For d = 3, Ref.[22] gives p2 = 0.16. For large d, we have

p2 ⌃ e�(d�1) (3.13)
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where the critical exponent ⇤p for p is determined in terms of pc. For large d, we see that
p2 is an unstable fixed point while p1 = 0 and p3 = 1 are stable fixed points. Using (3.13),
we have, for large d,

⇤p(p2) ⇤ 1 (3.15)

That is, for p < p2, p ⇧ 0, while for p > p2, p ⇧ 1. We see that dp = 1 at the fixed
point p1 = 0. For such a small dp, the medium is insulating. So one may conclude that
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In general, we expect the brane motion in the landscape to include rolling, scatterings

and tunneling. Classical scattering in the landscape raises the issue of percolation, that is,

whether such scattering will shut down the long distance mobility. Including this effect,

the conductance g also depends on a percolation probability p (0 ≤ p ≤ 1). Extending the

above analytic formula to include percolation [16] :

βg(g, p) = (d − 1)

(

1 +
1 − p

p
ln(1 − p)

)

− (g + 1) ln(1 + 1/g), (2.6)
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Condition for mobility

g ⇧ 0, ⇥d(g) ⇧ ln(g/gc), reproducing Eq.(2.5). For g ⇧ ⌃, ⇥d(g) ⇧ d � 2, reproducing
Eq.(2.6). The critical exponent can be expressed in terms of gc,

⌅ =
1 + gc

1� (d� 2)gc
(3.2)

In the ⇤-expansion, for small ⇤ = d � 2 > 0, one solves for the zero of the ⇥-function
(3.1) to obtain gc = 1/2⇤. Then Eq.(3.2) recovers the value of the critical exponent ⌅ = 1/⇤

in Eq.(2.19). We see that this is a simple model that reproduces the appropriate features
expected.

Comparing to Eq.(2.17), it gives �2 ⌅ 1/2. For d = 3, a numerical analysis of this
model yields gc = 0.255 and ⌅ = 1.68. This value for the critical exponent ⌅ is higher
than that in Eq.(2.19) for d = 3 from the ⇤-expansion. However, this value is compatible
with the estimate of 1.25 < ⌅ < 1.75 [31], suggesting that the leading ⇤-expansion is rather
crude for ⇤ = 1.

For large d, we find the zero of the ⇥-function is given by

gc = e�(d�1) (3.3)

that is, gc is exponentially small for large d, and

⌅ ⇧ 1 (3.4)

so we obtain the desired behavior for the critical conductance gc. Comparing (3.3) to the
microscopic property (1.3) leads to the conductng/mobile condition (1.4) for large d. Recall
that the typical tunneling probability between 2 neighboring sites is �0 ⇤ e�2a/�, we see
that the mobility condition is, for large d,

�0 > e�2(d�1) (3.5)

that is, an exponentially small tunneling probability can still lead to the conducting phase,
that is, mobility for the wavefunction.

3.2 Disorder with Percolation

This above model corresponds to a microscopically (i.e., at scales � a) random medium
but homogeneous at a larger scale. The cosmic landscape probably looks random even at
scales beyond a. To mimic the cosmic landscape, one may introduce additional randomness
at scales larger than a but still smaller than the macroscopic scale L. This scale can be
macroscopic, or intermediate, which is some times referred to as the mesoscopic scale. Let
us introduce disorder at this scale. This may be mimicked by the more general Shapiro
model that actually considers localization in a macroscopically inhomogeneous medium,
with percolation disorder. Percolation can be incorporated into the above model by intro-
ducing a probability p (1 ⇥ p ⇥ 0) that a typical site is occupied by a random scatterer, or
if a path remains open for e⇤cient tunneling. Now, ⇥d(g) ⇧ ⇥g(g, p) becomes a function
of p as well,

⇥g(g, p) = (d� 1)
�

1 +
1� p

p
ln(1� p)

⇥
� (g + 1) ln(1 + 1/g) (3.6)
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is an unstable fixed point, implying that the transition between mobility and localization
is a sharp one.

Consider a specific (enveloping) wavefunction ⇤(r) � e�|r|/� at site r = 0 with a typical
⇥ in the cosmic landscape (see Figure 1(b)). The wavefunction seems to be completely
localized at the site if the localization length ⇥ ⇥ a, where ⇥ measures the size of the
site and a is the typical spacing between sites. They are determined by local properties
and ⇥ is known as the localization length. With resonance tunneling, ⇥ can be somewhat
bigger, although ⇤(r) may still be exponentially suppressed at distance a. At distance
scales around a, the conductance goes like

g(a) � |⇤(a)| � e�a/� (1.3)

Note that, for a⇤ ⇥, �0 � |⇤(a)|2 � e�2a/�.
Given g = g(a) (1.3) at scale a, what happens to g at distance scales L⇤ a ? That is,

how does g scale ? The scaling theory of g is well studied in condensed matter physics. It
turns out that there is a critical conductance gc which is a function of d. If g(a) < gc, then
g(L) � e�L/� ⌅ 0 as L⌅⌃ and the landscape is an insulating medium. The wavefunction
is truly localized. Tunneling will take exponentially long and eternal inflation comes into
play. If g(a) > gc, the conductivity is finite (g(L) � (L/a)(d�2)) as L ⌅ ⌃ and the
landscape is in a conducting/mobile phase. The wavefunction is free to move. Around the
transition point, there is a correlation length that blows up at the phase transition. We
shall see that, at length scale a, this correlation length can be identified with ⇥. That is, ⇥

plays the role of the correlation length. This is how, given g(a) (1.3) at scale a, g can grow
large for large L.

In this paper, we argue that, for large d, the critical conductance is exponentially small,

gc ⇧ e�(d�1)

So it is not di⌃cult for g(a) > gc; given g(a) (1.3), we see that fast tunneling happens
when �0 > e�2(d�1), or

d >
a

⇥
+ 1 (1.4)

so the wavefunction of the universe can move freely in the quantum landscape even for
an exponentially small g(a). Since the �-function has a positive slope at the localization
transition point (implying an unstable fixed point), the transition between the insulating
(localization) phase and the conducting (mobile) phase is sharp. We see that it is precisely
the vastness of the cosmic landscape (as parameterized by a large d) that allows mobility
even if the wavefunction is localized. This mobility allows the wavefunction to sample
the landscape very quickly. It also means a semi-classical description of the landscape is
inadequate.

In the mobility phase, the wavefunction and/or the D3-branes (and moduli) move
down the landscape to a site with a smaller ⇥. At that site, some of its neighboring sites
have larger ⇥s, so the e⇤ective a increases, leading to a larger e⇤ective critical conductance
gc. This happens until the condition (1.4) is no longer satisfied and the D3-brane is stuck

– 4 –

is an unstable fixed point, implying that the transition between mobility and localization
is a sharp one.

Consider a specific (enveloping) wavefunction ⇤(r) � e�|r|/� at site r = 0 with a typical
⇥ in the cosmic landscape (see Figure 1(b)). The wavefunction seems to be completely
localized at the site if the localization length ⇥ ⇥ a, where ⇥ measures the size of the
site and a is the typical spacing between sites. They are determined by local properties
and ⇥ is known as the localization length. With resonance tunneling, ⇥ can be somewhat
bigger, although ⇤(r) may still be exponentially suppressed at distance a. At distance
scales around a, the conductance goes like

g(a) � |⇤(a)| � e�a/� (1.3)

Note that, for a⇤ ⇥, �0 � |⇤(a)|2 � e�2a/�.
Given g = g(a) (1.3) at scale a, what happens to g at distance scales L⇤ a ? That is,

how does g scale ? The scaling theory of g is well studied in condensed matter physics. It
turns out that there is a critical conductance gc which is a function of d. If g(a) < gc, then
g(L) � e�L/� ⌅ 0 as L⌅⌃ and the landscape is an insulating medium. The wavefunction
is truly localized. Tunneling will take exponentially long and eternal inflation comes into
play. If g(a) > gc, the conductivity is finite (g(L) � (L/a)(d�2)) as L ⌅ ⌃ and the
landscape is in a conducting/mobile phase. The wavefunction is free to move. Around the
transition point, there is a correlation length that blows up at the phase transition. We
shall see that, at length scale a, this correlation length can be identified with ⇥. That is, ⇥

plays the role of the correlation length. This is how, given g(a) (1.3) at scale a, g can grow
large for large L.

In this paper, we argue that, for large d, the critical conductance is exponentially small,

gc ⇧ e�(d�1)

So it is not di⌃cult for g(a) > gc; given g(a) (1.3), we see that fast tunneling happens
when �0 > e�2(d�1), or

d >
a

⇥
+ 1 (1.4)

so the wavefunction of the universe can move freely in the quantum landscape even for
an exponentially small g(a). Since the �-function has a positive slope at the localization
transition point (implying an unstable fixed point), the transition between the insulating
(localization) phase and the conducting (mobile) phase is sharp. We see that it is precisely
the vastness of the cosmic landscape (as parameterized by a large d) that allows mobility
even if the wavefunction is localized. This mobility allows the wavefunction to sample
the landscape very quickly. It also means a semi-classical description of the landscape is
inadequate.

In the mobility phase, the wavefunction and/or the D3-branes (and moduli) move
down the landscape to a site with a smaller ⇥. At that site, some of its neighboring sites
have larger ⇥s, so the e⇤ective a increases, leading to a larger e⇤ective critical conductance
gc. This happens until the condition (1.4) is no longer satisfied and the D3-brane is stuck

– 4 –

g ⇧ 0, ⇥d(g) ⇧ ln(g/gc), reproducing Eq.(2.5). For g ⇧ ⌃, ⇥d(g) ⇧ d � 2, reproducing
Eq.(2.6). The critical exponent can be expressed in terms of gc,

⌅ =
1 + gc

1� (d� 2)gc
(3.2)

In the ⇤-expansion, for small ⇤ = d � 2 > 0, one solves for the zero of the ⇥-function
(3.1) to obtain gc = 1/2⇤. Then Eq.(3.2) recovers the value of the critical exponent ⌅ = 1/⇤

in Eq.(2.19). We see that this is a simple model that reproduces the appropriate features
expected.

Comparing to Eq.(2.17), it gives �2 ⌅ 1/2. For d = 3, a numerical analysis of this
model yields gc = 0.255 and ⌅ = 1.68. This value for the critical exponent ⌅ is higher
than that in Eq.(2.19) for d = 3 from the ⇤-expansion. However, this value is compatible
with the estimate of 1.25 < ⌅ < 1.75 [31], suggesting that the leading ⇤-expansion is rather
crude for ⇤ = 1.

For large d, we find the zero of the ⇥-function is given by

gc = e�(d�1) (3.3)

that is, gc is exponentially small for large d, and

⌅ ⇧ 1 (3.4)

so we obtain the desired behavior for the critical conductance gc. Comparing (3.3) to the
microscopic property (1.3) leads to the conductng/mobile condition (1.4) for large d. Recall
that the typical tunneling probability between 2 neighboring sites is �0 ⇤ e�2a/�, we see
that the mobility condition is, for large d,

�0 > e�2(d�1) (3.5)

that is, an exponentially small tunneling probability can still lead to the conducting phase,
that is, mobility for the wavefunction.

3.2 Disorder with Percolation

This above model corresponds to a microscopically (i.e., at scales � a) random medium
but homogeneous at a larger scale. The cosmic landscape probably looks random even at
scales beyond a. To mimic the cosmic landscape, one may introduce additional randomness
at scales larger than a but still smaller than the macroscopic scale L. This scale can be
macroscopic, or intermediate, which is some times referred to as the mesoscopic scale. Let
us introduce disorder at this scale. This may be mimicked by the more general Shapiro
model that actually considers localization in a macroscopically inhomogeneous medium,
with percolation disorder. Percolation can be incorporated into the above model by intro-
ducing a probability p (1 ⇥ p ⇥ 0) that a typical site is occupied by a random scatterer, or
if a path remains open for e⇤cient tunneling. Now, ⇥d(g) ⇧ ⇥g(g, p) becomes a function
of p as well,

⇥g(g, p) = (d� 1)
�

1 +
1� p

p
ln(1� p)

⇥
� (g + 1) ln(1 + 1/g) (3.6)

– 12 –

is an unstable fixed point, implying that the transition between mobility and localization
is a sharp one.

Consider a specific (enveloping) wavefunction ⇤(r) � e�|r|/� at site r = 0 with a typical
⇥ in the cosmic landscape (see Figure 1(b)). The wavefunction seems to be completely
localized at the site if the localization length ⇥ ⇥ a, where ⇥ measures the size of the
site and a is the typical spacing between sites. They are determined by local properties
and ⇥ is known as the localization length. With resonance tunneling, ⇥ can be somewhat
bigger, although ⇤(r) may still be exponentially suppressed at distance a. At distance
scales around a, the conductance goes like

g(a) � |⇤(a)| � e�a/� (1.3)

Note that, for a⇤ ⇥, �0 � |⇤(a)|2 � e�2a/�.
Given g = g(a) (1.3) at scale a, what happens to g at distance scales L⇤ a ? That is,

how does g scale ? The scaling theory of g is well studied in condensed matter physics. It
turns out that there is a critical conductance gc which is a function of d. If g(a) < gc, then
g(L) � e�L/� ⌅ 0 as L⌅⌃ and the landscape is an insulating medium. The wavefunction
is truly localized. Tunneling will take exponentially long and eternal inflation comes into
play. If g(a) > gc, the conductivity is finite (g(L) � (L/a)(d�2)) as L ⌅ ⌃ and the
landscape is in a conducting/mobile phase. The wavefunction is free to move. Around the
transition point, there is a correlation length that blows up at the phase transition. We
shall see that, at length scale a, this correlation length can be identified with ⇥. That is, ⇥

plays the role of the correlation length. This is how, given g(a) (1.3) at scale a, g can grow
large for large L.

In this paper, we argue that, for large d, the critical conductance is exponentially small,

gc ⇧ e�(d�1)

So it is not di⌃cult for g(a) > gc; given g(a) (1.3), we see that fast tunneling happens
when �0 > e�2(d�1), or

d >
a

⇥
+ 1 (1.4)

so the wavefunction of the universe can move freely in the quantum landscape even for
an exponentially small g(a). Since the �-function has a positive slope at the localization
transition point (implying an unstable fixed point), the transition between the insulating
(localization) phase and the conducting (mobile) phase is sharp. We see that it is precisely
the vastness of the cosmic landscape (as parameterized by a large d) that allows mobility
even if the wavefunction is localized. This mobility allows the wavefunction to sample
the landscape very quickly. It also means a semi-classical description of the landscape is
inadequate.

In the mobility phase, the wavefunction and/or the D3-branes (and moduli) move
down the landscape to a site with a smaller ⇥. At that site, some of its neighboring sites
have larger ⇥s, so the e⇤ective a increases, leading to a larger e⇤ective critical conductance
gc. This happens until the condition (1.4) is no longer satisfied and the D3-brane is stuck

– 4 –



The Quantum Landscape

moves quickly
little time to inflate

trapped 
very long lifetime

at a small ⇥ site. This transition takes place at a critical ⇥c. The mobility shuts o⇤ for
⇥ < ⇥c, and the universe ends up at a site with a small ⇥ < ⇥c. This suggests that the
quantum landscape is a mixture of two components : the sites composed of ⇥ > ⇥c form
a conducting medium while the sites composed of ⇥ < ⇥c form an insulating medium. In
terms of the string scale, we intuitively expect ⇥c to be exponentially small. To explain
the cosmological constant problem, we require ⇥c to be larger than, but not too many
orders of magnitude larger than today’s dark energy. A more detailed analysis of this
quantum landscape is necessary to find the critical value ⇥c. As an illustration, we give a
simple toy-like scenario, where we find that ⇥c can easily be exponentially small compared
to the string or the Planck scale. For a flat distribution of number of sites with the 4-
dimensional cosmological constant between the string scale Ms and zero, we see that the
critical cosmological constant goes like d�dM4

s . This yields a critical cosmological constant
at the right order of magnitude for d � 50, a reasonable value. Clearly a better estimate
will be valuable.

The time for one e-fold of inflation is Hubble time 1/H (H is the Hubble parameter)
while the lifetime of the site is naively given by (H�nr

t )�1. Since �nr
t (1.1) is exponentially

small, eternal inflation seems unavoidable. However, in the quantum landscape, we find
that the mobility time scale is much shorter than the Hubble time scale; so we conclude
that eternal inflation in the landscape is highly unlikely. The cosmological evolution of
the universe remains to be understood. The quantum landscape does open new doors
that should be explored. Some speculations are discussed. Analogous to condensed matter
physics where the transition can go from localization to superconductivity, one may wonder
if the landscape is not only conducting but superconducting, and what are its implications.

An upcoming paper [25] comes to similar conclusions on fast tunneling as in Ref.[13]
in a di⇤erent approach. See Ref.[26, 27, 28, 29, 30] for some other related discussions.

In Section 2, we review the general scaling theory of Anderson transition and apply it
to the landscape. In Section 3, we consider a specific model due to Shapiro [22]. We find
that the critical conductance is exponentially small for large d and the condition is given in
Eq.(1.4). In Section 4, we try to extract the critical ⇥c from the critical conductance. As
an illustration, we show that ⇥c can easily be exponentially small compared to the string or
the Planck scale. Section 5 contains some discussions concerning the overall scenario. We
explain how eternal inflation is avoided and give some speculative overview of the scenarios
we have in mind. Section 6 contains some final remarks. Appendix A reviews very briefly
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Behavior of the wavefunction
manifold to another. Its motion in the landscape involves repeated fast tunneling, quantum

hopping, scattering and ordinary rolling, may be even some slow-roll.

The potential for the inflation in this scenario is illustrated in Fig. 4. In this figure,

Figure 4: Cartoon for the tunneling path of the universe in the string landscape. The universe
rolls, percolates and tunnels down the landscape. Tunneling is fast at sites with Λ > Λc, and
exponentially slow at sites with Λ < Λc, where Λc is exponentially small compared to the Planck
scale. It is important to note that the actual path is multi-dimensional and the scale of this picture
is not accurate.

we (over)simplify the picture of tunneling/percolation path of our universe to be one-

dimensional. This picture is similar in looks to that proposed in Ref.[28], where a saltatory

relaxation (i.e., relaxation by jumps) of the cosmological constant takes place as the uni-

verse tunnels repeatedly down the potential. Here we give an explicit dynamical realization

of this behavior that happens in the landscape due to its vastness. Despite the presence of

classically local minima, the wavefunction may simply roll past them since these minima

are either too weak to trap the wavefunction, or strong enough to trap the wavefunction,

but the trapping is so weak that the wavefunction can easily tunnel out. (For a D3-brane

moving down such a random potential, its mobility would be further enhanced by its ki-

netic energy as well as bulk radiation, since these tend to further suppress binding. The

DBI action may significantly enhance the tunneling rate [25]. In addition, as shown in

Eq.(3.17), the tunneling is faster when the brane is higher up in the landscape. On the

other hand, brane radiation, cosmological expansion of the universe and other damping

mechanisms would tend to counteract, providing an interesting non-trivial dynamics.) The
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Estimate of critical C.C.

the medium is insulating for p < p2. Following Eq.(3.13), we see that the attractive region
p2 > p ⇥ 0 for the insulating phase is exponentially small.

For p > p2, depending on the initial microscopic values of g and p, the medium is
in an insulating phase with g ⇤ 0 when g(p) < gc(p), or, in a conducting phase when
g(p) > gc(p) : �(g)⇤ d� 2, where gc(p) is given by Eq.(3.9). Since p2 ⇤ 0 as d⇤⌅, we
see that the condition for the conducting/mobile phase is quite insensitive to disorder at
the mesoscopic scale.

We see that there are universality properties that one may extract from the cosmic
landscape that is most likely insensitive to any of the details. However, a better knowledge
of its structures can be important for finding out which universality class the renormaliza-
tion group properties of the cosmic landscape belongs to.

4. A Critical Cosmological Constant

Now we like to see how a critical �c can emerge. It is reasonable to assume that tunneling
takes place from a site with �1 > 0 only to any other sites with � which is smaller but semi-
positive, that is, �1 ⇥ � ⇥ 0. For the discussion to be applicable to general uncompactified
spatial dimensions, let �̂ designate the mass scale of the vacuum energy density, so the
usual vacuum energy density goes like � = �̂4 in 4-dimensional spacetime.

Let us start with the simple condition for mobility (1.4), where, for large d,

d(�) >
a(�)
⇥(�)

⇤ d >
a(�̂)

⇥
(4.1)

where, to simplify the problem, we assume that d and ⇥ are insensitive to �. As � decreases,
a site has fewer nearby sites to tunnel to, so the e⇥ective site spacing a increases. As a

increases, at certain critical value, the above condition is no longer satisfied and true
localization takes over. (We expect that e⇥ectively d decreases, but we ignore this e⇥ect
here. Including this e⇥ect changes only the quantitative picture.)

Suppose sites with di⇥erent � are irregularly distributed in the landscape. Let there
be NT classically stable sites with Ms > � ⇥ 0 in a region in the moduli space with size
L. If we start at a site with �̂ = Ms, then the typical spacing a is given by

NT = N(Ms) =
�

L

a(Ms)

⇥d

(4.2)

Let f(�̂) be the fraction of sites with semi-positive vacuum energy �̂ < Ms, with f(Ms) = 1.
(That is, the distribution function is given by NT (df/d�).) Then the number of sites in
this region with vacuum energy smaller than � is given by

N(�̂) = f(�̂)NT =

⇤
L

a(�̂)

⌅d

(4.3)

or

a(�̂) = a(Ms)f(�̂)�1/d (4.4)
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Since f < 1 for ⇤̂ < Ms, we see that a(⇤̂) > a(Ms), and a increases as ⇤̂ decreases.
Following Eq.(4.1), we see that there is a critical ⇤c = ⇤̂4

c , below which mobility stops and
the wavefunction is truly localized. The universe lives exponentially long at any low ⇤ site,
where ⇤ < ⇤c.

As an illustration, one may take f(⇤̂) ⇥ (⇤̂/Ms)s, so a(⇤̂)/a(Ms) ⇥ (⇤̂/Ms)�s/d.
Taking a(Ms) � 1/Ms and similarly ⇥ � 1/Ms, we have

⇤̂c ⇥ d�d/sMs (4.5)

Since the cosmological constant ⇤ in 4-dimensional spacetime goes like ⇤̂4, s = 4 cor-
responds to a flat ⇤ distribution. For this distribution, the critical 4-dim. cosmological
constant goes like

⇤c � d�dM4
s (4.6)

so d � 60 looks quite reasonable. (Recall that ⇤̂c/Ms � 10�30 to 10�20.) In fact, a smaller
s or a larger d will lead to a much too small ⇤c. We see that the vastness of the cosmic
landscape, as parameterized by the large d, is crucial to this particular approach to the
cosmological constant problem.

5. Discussions

As we have discussed, we like to avoid eternal inflation totally in the history of our universe.
If the universe goes through inflation for more than one e-fold in a ⇤ meta-stable site, then
eternal inflation is unavoidable, since tunneling of some patches of the inflating universe
will still leave other patches to continue inflating. At a given site, the time to go through
one e-fold of inflation is a Hubble time, i.e., ⇥t = H�1 �MPlanck/⇤̂2 (recall that we have
defined ⇤̂ to be the scale of the cosmological constant). (If the universe at that site starts
with some radiation, then it will take additional time to reach the inflationary stage. So
the time the universe can stay in a ⇤ meta-stable site without eternal inflation may be
longer than the Hubble time. Let us ignore the presence of radiation for the moment.)
In the absence of resonance tunneling, the time �t that the universe stays at the ⇤ site is
�t � 1/H�0 ⇤ 1/H, so eternal inflation is unavoidable.

To avoid eternal inflation in the quantum landscape, fast tunneling has to be faster
for larger ⇤. In the mobility phase, we can crudely estimate the time �t it takes for the
universe to move from one site to another, using the simple formula : potential di⌅erence V

equals the product of the current and the resistance � 1/g. To get an order of magnitude
estimate, we let V � ⇤̂, the current � (a/�t)/L and g(L) = ⇤Ld�2 � B(L/a)d�2 where ⇤

is the rescaled conductivity and B is a dimensionless finite constant. This yields the time
it takes the state to move from a site to a neighboring site �t � (a/L)d�1(1/⇤̂), or

�t < 1/⇤̂ < ⇥t

So we see that the avoidance of eternal inflation in the early universe is probably automatic
when the universe is in the conducting component of the landscape, i.e., when ⇤ > ⇤c. So
it is reasonable to assume that no eternal inflation happens during the mobile phase.
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the time the universe can stay in a ⇤ meta-stable site without eternal inflation may be
longer than the Hubble time. Let us ignore the presence of radiation for the moment.)
In the absence of resonance tunneling, the time �t that the universe stays at the ⇤ site is
�t � 1/H�0 ⇤ 1/H, so eternal inflation is unavoidable.

To avoid eternal inflation in the quantum landscape, fast tunneling has to be faster
for larger ⇤. In the mobility phase, we can crudely estimate the time �t it takes for the
universe to move from one site to another, using the simple formula : potential di⌅erence V

equals the product of the current and the resistance � 1/g. To get an order of magnitude
estimate, we let V � ⇤̂, the current � (a/�t)/L and g(L) = ⇤Ld�2 � B(L/a)d�2 where ⇤

is the rescaled conductivity and B is a dimensionless finite constant. This yields the time
it takes the state to move from a site to a neighboring site �t � (a/L)d�1(1/⇤̂), or

�t < 1/⇤̂ < ⇥t

So we see that the avoidance of eternal inflation in the early universe is probably automatic
when the universe is in the conducting component of the landscape, i.e., when ⇤ > ⇤c. So
it is reasonable to assume that no eternal inflation happens during the mobile phase.
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flat distribution :



Big assumption

• Tunneling or evolving to AdS vacua ?



History of our Universe -
A Speculation Picture

• Parts can be replaced by better parts later, as our 
understanding gets better, with more input from 
data.

Taking a crude look at the whole
Gell-mann

Quantum Creation of the Universe



“Tunneling” from Nothing

Time

deSitter space

Radius  !
"1/2

Euclidean

Lorentzian

S
4

Nothing

Vilenkin, 1982, 1983
Hartle and Hawking,  1983



• This implies that the most likely ones are the ones 
with extremely small CC. However, the size of the 
de-Sitter space goes like 

BRIEF ARTICLE

THE AUTHOR

(1) P = e3⇡/G⇤

1

BRIEF ARTICLE

THE AUTHOR

(1) P = e3⇡/G⇤

(2) 1/⇤1/2

1

Classical effects must come into play for 
such a large universe.

That means we should include decoherence effect.



What is wrong ? How to fix it ?

• Tunneling is to a huge super-macroscopic universe, with 
nothing in it.

• Interacting with the environment suppresses tunneling.

• There must be some gravitational radiation.

• Its interaction with the system (cosmic scale factor a) 
introduces decoherence.

• Smaller CC means larger universe means more radiation 
implies more decoherence thus suppressing the tunneling.



The improved Euclidean action 
SE,dC vs SE,0

!

breakdown of semiclassical
approximation for large !

0

S

S

E,0

E,dC

The Improved Wavefunction

P ⇥ eF

F = 3�
G� �

12nd

�2l4s

SE,0 is unbounded from below, but the interaction

with the environment has made SE,dC = �F

bounded from below.

The Improved Wavefunction

P ⇥ eF

F = 3�
G� �

12nd

�2l4s

SE,0 is unbounded from below, but the interaction

with the environment has made SE,dC = �F

bounded from below.

Tunneling probability

P ! e−SE,dC
= eF

Firouzjahi, Sarangi and H.T., hep-th/0406107, 0505104



Tunneling from Nothing, 
including decoherence

Time

Euclidean

Lorentzian

Gravitational

1!loop

Effect

Perturbative Mode

Nothing



History ?

• The Universe is a spontaneous creation 
from NOTHING.

• It starts with a vacuum energy 
somewhere below the string scale.

• It evolves in the landscape, producing 
inflation.

• It then reaches a vacuum site in the 
landscape with a small CC and an 
exponentially long lifetime.

• This is where we live.



History?
A Quantum Fluctuation from Nothing 

 (No classical space or time) 
↓

Universe moves in the Landscape (and inflates)
↓

 Brane Inflation (Branes moving slowly towards each other) 
(Universe grew exponentially) 

↓
 Branes collided to heat up the universe

        10-30 sec. 
↓

 Hot Big Bang Epoch 
(Nucleosynthesis around 10 sec. ) 

↓
 Matter-dominated Epoch 

(Star/galaxy formation begins at 1012 sec. ) 
↓

 Today’s Universe 
size ~ 1    1018   sec.


