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How is inflation realized in brane world ?

Brane inflation         Dvali and H.T. hep-ph/9812483

Inflaton is an 
open string 

mode

Inflaton potential 
comes from the 

closed string 
exchange



D3-anti-D3 brane inflation

C.P. Burgess, M. Majumdar, D. Nolte, F. 
Quevedo, G. Rajesh, R. Zhang, hep-th/0105204

G. Dvali, Q. Shafi and S. Solganik, hep-th/
0105203

D3

anti-D3

Relatively flat potential ?



Flux compactification

D7−branesD7−branes

Figure 1: A schematic picture of the Calabi-Yau manifold is presented here. The large
circle given by dashed line represent the 3-cycle where NS-NS three form H3 is turned
on. The smaller circle in the throat stands for the 3-cycle where the R-R three form F3

is turned on. Also shown are D7-branes wraping 4-cycles. There may exists a number of
throats like the one shown here. There is a mirror image of the entire picture due to the
IIB/Z2 orientifold operation.

From the zero mode we obtain the usual relation between the gravity strength
in four dimensions and the fundamental mass scale of the higher dimensional theory
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One may choose �(0) = 1 as a convention, but in order to compare its magnitude to
the excited modes magnitude we keep it as �(0) which is of course a constant. For
the excited mode we impose the following normalization condition
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After this general discussions we would like to find the KK spectrum of the
gravitons and other closed string modes in the KS background. We postpone the
spectrum analysis until section 6 after some introduction of the KS background.

3. A Throat in the Calabi-Yau Manifold

A KKLT vacuum involves a Calabi-Yau (CY) manifold with fluxes [1]. Consider F-
theory compactified on an elliptic CY 4-fold X. The F-theory 4-fold is a useful way

7

warped throat

Giddings, Kachru, Polchinski
Kachru, Kallosh, Linde, Trivedi

and many others 

where all moduli of the 6-dim. manifold are stabilized

KKLT vacuum



The KKLMMT scenario

D7−branesD7−branes

Figure 1: A schematic picture of the Calabi-Yau manifold is presented here. The large
circle given by dashed line represent the 3-cycle where NS-NS three form H3 is turned
on. The smaller circle in the throat stands for the 3-cycle where the R-R three form F3

is turned on. Also shown are D7-branes wraping 4-cycles. There may exists a number of
throats like the one shown here. There is a mirror image of the entire picture due to the
IIB/Z2 orientifold operation.

From the zero mode we obtain the usual relation between the gravity strength
in four dimensions and the fundamental mass scale of the higher dimensional theory
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After this general discussions we would like to find the KK spectrum of the
gravitons and other closed string modes in the KS background. We postpone the
spectrum analysis until section 6 after some introduction of the KS background.

3. A Throat in the Calabi-Yau Manifold

A KKLT vacuum involves a Calabi-Yau (CY) manifold with fluxes [1]. Consider F-
theory compactified on an elliptic CY 4-fold X. The F-theory 4-fold is a useful way
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anti-D3-brane

D3-brane

Kachru, Kallosh, Linde, Maldacena, MacAllister, Trivedi,
hep-th/0308055



Probability with N e-folds:

N. Agarwal, R. Bean, L. McAllister, G. Xu, 1103.2775

maximum dimension �
max

= 6, 7, and 7.8, and we take Nf = 1, 2, 6 of the D3-brane coordinates
to be dynamical fields. The coe�cients cLM have rms size Q, and the rescaled quantities ĉLM =
cLM/Q are drawn from a distribution M that has unit variance. We begin at x = x
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Figure 1: Examples of downward-spiraling trajectories for a particular realization of the poten-
tial. The black dots mark 60 and 120 e-folds before the end of inflation (7 of the 8 curves shown
achieve Ne > 120); inflation occurs along an inflection point that is not necessarily parallel to
the radial direction. Red curves have nonvanishing initial angular velocities  ̇

0

, while blue
curves have  ̇

0

= 0.

4 Results for the Homogeneous Background

As a first step, we study the evolution of the homogeneous background. In §4.1, we show that
for fixed initial conditions, the probability of Ne e-folds of inflation is a power law, and we show
that the exponent is robust against changes in the input parameters �

max

, Nf , and M. In
§4.2 we present a simple analytic model that reproduces this power law. We study the e↵ect
of varying the initial conditions in §4.3, and we discuss DBI inflation in §4.4.
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2 THE AUTHOR

What is eternal inflation ?

a(t) ⇠ eHt

H2 ⇠ 1/G⇤

Consider a patch of size 1/H.

Suppose T ⇠ 3/H.

The universe would have grown by a factor of e3·3 = e9.
If inflation ends in one patch, there are still many other

(causally disconnected) patches which continue to inflate.

So inflation never ends.

g ⇠ e�Ln

�(g) ⇠ n ln(g/gc)

10

�8 > Gµ > 10

�14

P (Ne) ⇠ N�3
e

The inflationary properties depends 
sensitively on the properties of the throat 

and compactification.

D3

Shiu and Underwood, 
Bean, Shandera, HT, Xu,

Baumann, Klebanov, Maldacena, Steinhardt, 
McAllister, Dymarsky, Seiberg, Murugan, . . .

Burgess, Cline, Dasgupta, Firouzjahi, Stoica, . . .

Radial mode +
5 angular modes

in
S2 x S3



Other Possibilities
Outline

Introduction
Cosmic String Network

Microlensing
Summary

Brane Inflation

Some simple scenarios

Features:

• Mobile D3s

• warped throats

• anti-D3s in throats

• Wrapped D7s

• DBI

D7

D3

D3

D3

D3

Henry Tye Brane Inflation : an Overview 7/32



Testing Brane Inflation

• Compare power spectrum and its running

• Tensor mode (B mode polarization)

• Non-Gaussianity

• Steps (from Gauge-gravity duality)



A blip in CMB power spectrumData at high k (l) will improve

ACBAR  Kuo etc., astro-ph/0611198  



A small step in the potential can 
generate such a blip

Power spectrum

Adam, Cresswell, Easther, astro-ph/0102236



As the D3 brane moves down the throat:
Cascade

Klebanov-Strassler throat

SU((K + 1)M) × SU(KM)

SU((K − 1)M) × SU(KM)

SU((K − 1)M) × SU((K − 2)M)

SU(2M) × SU(M)

.............

.............

l = 1

l = 2

r = r0

r = r1

r = r2

The inflationary properties depends 
sensitively on the properties of the throat 

and compactification.

D3

Shiu and Underwood, 
Bean, Shandera, HT, Xu,

Baumann, Klebanov, Maldacena, Steinhardt, 
McAllister, Dymarsky, Seiberg, Murugan, . . .

Burgess, Cline, Dasgupta, Firouzjahi, Stoica, . . .

Radial mode +
5 angular modes

in
S2 x S3



RG Flow and Seiberg Duality
RG flow and Seiberg duality transition

T
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• The anomalous mass dimension has a correction that 
depends on which step the RG flow is at. This means that 
the coupling flows depend on which step the flow is at. 

• Using gauge/gravity duality, we see that the dilaton runs 
and it has a kink at the position where Seiberg duality 
transition takes place.

• this leads to steps in the warp factor, which then leads to 
steps in the inflaton potential.

Cascade



Predictions

• it predicts additional 
steps : their positions, 
their heights and their 
widths.

• it also predicts non-
Gaussianity features due 
to the steps.

• After fitting the feature at l ~ 20 in WMAP data,

Girma Hailu and HT, Hep-th/0611353 
R. Bean, X. Chen, G. Hailu, HT and J. Xu, 0802.0491

X. Chen, R. Easther, E. Lim, 
astro-ph/0611645

φ̇2 ∼ h4(φ), it is most sensitive to the step in the warp factor. φ̇2 increasing by a factor

of (1 + 2b) across a step decreases PR by a factor of (1 + 2b). The CMB data shows that

around l ∼ 20, there is a dip in the power spectrum by about 20% in k-space, which gives

2b ∼ 0.2. Using (2.9), we have
(

3gsM

8π

)

1

(pi + 1)3
∼ 0.2 . (5.11)

Given that gsM ≈ 33 to fit the spacing of the steps, we immediately get

pi = 2 . (5.12)

With input of 4 quantities : the position l ∼ 20, the fractional height (size) ∆T/T # 0.2

and the width ∆lp ∼ 5 of the 2nd step as well as the position (at l ∼ 2) of the first step,

we can use ∆l ∝ l and ∆T/T ∝ p−3 to get a complete set of predictions:

p l ∆T/T ∆lp

2 ∼ 2 ∼ 0.7 ∼ 1

3 ∼ 20 0.2 ∼ 5

4 ∼ 170 ∼ 0.08 ∼ 40

5 ∼ 1300 ∼ 0.04 ∼ 260

Note that ∆T/T ∼ 0.7 and ∆T/T = 0.2 for the first two steps are probably too big to be

treated as a perturbation. We shall take this to mean that the size of the first step can be

very big.

We should point out that the warp factor Eq.(2.9) is a good approximation only when

p % 1. This condition is also necessary to ignore the running of the dilaton. So p = 3 is

already too small. Moreover, as we will see in Sec. 5.4, the glitch in the power spectrum

around l ∼ 20 may be too large to be explained by a step feature in the warp factor due

to the duality cascades.

5.2 Qualitative Analyses around a Single Step

We consider a sharp step in the warped geometry T (r). We parametrize the size of the

step as 2b ≡ ∆T/T and the width as ∆φ ≡ 2d. We use the tanh function interpolation

between the two sides of the step, i.e.

T (r) ≡ T3
r4

R4

[

1 + b tanh

(

r − rs
d

)]

. (5.13)

5.2.1 The Evolution of the Sound Speed

We use the case of positive b to illustrate the evolution of the sound speed, the formulae

are the same for negative b. The direction of the step is such that, for positive b, T steps up

as r increases, i.e. the warp factor h ∝ T 1/4 (or the speed-limit h2) increases as r increases.

The first stage is when branes move across the step, where the speed-limit increases

suddenly. Since the time that the branes spend to across the step is very short comparing

to the Hubble time (see Appendix C), during which we can ignore the Hubble expansion

– 18 –



Brane inflation, 2003

Tye

Callan and Maldacena, hep-th/9708147
Savvidy, hep-th/9708147Hashimoto, hep-th/0204203

D3-Brane and anti-D3-brane annihilate:

All energy released 
goes to strings:  

fundamental strings
and D1-branes

At the end of brane inflation:



Well-known important cosmological 
properties:

• Monopoles  :   density ~                Disastrous

• Domain walls  :  density ~  1/a       Dangerous  

• cosmic strings   :  density ~                                                    
interaction cuts it down to         during radiation

N. Jones, H. Stoica, H.T.,  hep-th/0203163
                 S. Sarangi , H.T., hep-th/0204074

a
−3

a
−2

a
−4

10
−11 < Gµ < 10

−6

Safe



Cosmic strings

• Cosmic string interactions produce a 
scaling cosmic string network.



History of cosmic strings

• Early 1980s : proposed to generate density perturbation as seed 
for structure formation; as an alternative to inflation;                                       
Kibble, Zeldovich, Vilenkin, Turok, Shellard, . . . . . .

• In 1985, Witten attempted to identify the cosmic strings as 
fundamental strings in superstring (heterotic) theory. He pointed 
out a number of problems with this picture: tension too big, no 
production and the stability issue. 

• In early 1990s, COBE data disfavors cosmic strings.

• By late 1990s, CMB data supports inflation and ruled out cosmic 
string as an explanation to the density perturbation.

• In 1995, Polchinski and others pointed out the presence of D-
branes in string theory. This led to the brane world/brane 
inflation scenarios, which led to a revival of cosmic strings, 
which can have much lower tensions and can be quite stable.

• These cosmic strings were produced cosmologically.

Gµ > 10
−6



(p,q) Superstrings
• In contrast to vortices in Abelian Higgs model, 

cosmic strings from brane inflation should have a 
spectrum in tension.

• This is the (p,q) strings, where p and q are coprime. 
(1,0) strings are fundamental strings while (0,1) 
strings are D1-strings.

• The spectrum depends on the particular brane 
inflationary scenario.

E. Copeland, R. Myers and J. Polchinski, hep-th/0312067
G. Dvali and A. Vilenkin, hep-th/0312004  

Gµp,q =
√

p2g2
s

+ q2Gµ

They have non-trivial interactions.

1

2

1

12

2

1

1

2

2

1+2

1!2
or



D1-string inside D3-brane

D3-brane

D1-vortex

D1-vortex loop

D1-string

Figure 3: A D1-string intersecting a D3-brane and forming a D1-vortex inside the D3-brane. The
picture also shows a D1-vortex loop existing on its own.

as measured by C2. This screening of C2 charge happens because C2 becomes massive.

Naively, they look like a D1-string screened by an anti-D1-string. However, they cannot

annihilate, since the origin of the RR charge for the D1-component is different from that

for the anti-D1-component. Furthermore, the two charges do not cancel locally. As we

move this vortex outside a D3-brane, the magnetic flux around the core disappears since

the gauge field is absent outside the D3-brane. So this vortex recovers its RR charge

and becomes a D1-string. In this sense, we believe the conserved winding number is the

appropriate quantity to follow as we move a D1-string inside/outside a D3-brane. In the

tachyon condensation picture, a BPS D1-string is a vortex, so here we simply see that the

vortex changes its thickness, tension, and magnetic flux as it moves in/out a D3-brane, but

it is always topologically stable, due to the winding number measured by the axion φ.

As ξ ∼ g1/2
s goes to zero, the vortex grows (1/ξ) to infinite size and its energy density

spread throughout the D3-brane. The D1-string tension (ξ−2) also goes to infinity while the

D1-vortex tension grows only logarithmically. So, as a D1-string moves inside a D3-brane,

it goes to a lower tension vortex with infinite size, i.e., just like dissolution.

4.3 Low Energy Effective Theory in String Theory

The δ-function is the origin of the singular behavior of the tension. Including the partner

of C2 (i.e., |Φ|) should get rid of the δ-function singularity. In string theory, this massive

Higgs mode is always present. Together with φ, they form a complex scalar mode. Consider

the low energy effective theory of a generic Type IIB orientifold model. One may write the

effective Lagrangian for all the string modes as

L = L0,2 + L0,I + LM (4.9)

– 13 –

mode that is swallowed by the gauge field inside the D3-brane via the Higgs (or Green-

Schwarz) mechanism. Since the axion remains massless, the domain wall tension is exactly

zero, i.e., there is no domain wall. At the same time, the D1-string becomes a vortex (a

D1-vortex) in the Abelian Higgs model, with localized energy density (see Fig. 2), though

it is no longer BPS. As a consequence, the D1-strings survive inside D3-branes and they

will evolve as a network of cosmic strings in our universe. The actual phenomenology of

the cosmic string network does depend on the details of the inflationary scenario.

As measured by C2, the net RR charge of this D1-vortex is zero. Besides a positive

contribution to the RR charge from the winding number of the axion, there is a negative

contribution to the RR charge coming from the magnetic flux. This is screening. (However,

as shown in Figure 1, these two contributions do not cancel locally, so there is a non-trivial

RR charge density.) That is, as we move a D1-string inside a D3-brane, it loses its RR

charge, but retains its winding number. (One can define this same charge in the Abelian

Higgs model, and likewise, a vortex there also has a net zero charge.) Note that the winding

number is identified with the RR charge outside the D3-brane. Since it is conserved when

a D1-string moves inside the D3-brane (it becomes the winding number of the D1-vortex),

it is a more useful quantum number to keep track.

3. The Stability of a D1-String Inside a D3-Brane

To set up the problem, we first consider a D1-string outside a D3-brane, i.e., a D1-string as

a BPS D1-brane with coupling to the 2-form RR field C2. Next we put it inside a D3-brane.

The key new ingredient is the coupling of the abelian gauge field A1 to C2. The Green-

Schwarz mechanism takes place and A1 becomes massive. This model can be exactly solved

where the D1-string becomes a vortex in the Abelian Higgs model. This D1-vortex remains

topologically stable with localized energy density, though they are no longer BPS. There

is a very rich literature [31] on Chern-Simons vortices and relation between Chern-Simons

terms and the Abelian Higgs model, though in different contexts.

3.1 D1-String Outside a D3-brane

Let us dimensionally reduce the 10-dimensional theory to an effective 4-dimensional theory

to get the kinetic term for C2 from the bulk action. Consider n D1-strings coupled to C2 in

the four uncompactified dimensions, all sitting along the z-axis at r = |x⊥| =
√

x2 + y2 = 0.

After rescaling C2 to obtain a canonical kinetic term, we have (with constant dilaton

background):

S = −
∫

M4

1

2
|dC2|2 + 2πnaδ2(x⊥) ∧ C2. (3.1)

where a =
√

2τ1κ4 measures the RR charge of a D1-string whose coordinate is δ2(x⊥)dx∧dy.

τ1 is the D1-string tension and κ4 is the 4-dimensional effective gravitational coupling. It

is related to the 10-dimensional coupling κ2
4V6 = κ2 = κ2

10g
2
s where V6 is the 6-dimensional

compactified volume and gs is the string coupling. Introducing the dual of C2, adφ = &dC2,

– 5 –

we have

ad ∧ dφ = d " dC2 = 2πnaδ2(x⊥), (3.2)

"dC2 = adφ = a
n

r
,

where we have chosen φ to be dimensionless and " = "4 unless we specify otherwise. Note

that d∧ dφ is not identically zero since φ is not single valued; φ(xµ) increases by 2πn as it

circles the z-axis once.

3.2 D1-String Inside a D3-brane

Now consider the same D1-string inside a D3-brane, with the D3-brane world volume action

that involves the C2 and the Abelian gauge field A1.

S = −
∫

M4

1

2
|G2|2 +

1

2
|dC2|2 + ξC2 ∧ G2 + 2πnaδ2(x⊥) ∧ C2 (3.3)

where G2 = dA1, ξ =
√

2τ3κ4, τ3 is the D3-brane tension. Note that C2, A1, ξ and a have

dimension of mass. For ξ = 0 (e.g., when V6 → ∞), both A1 and C2 are massless. For

finite ξ, spontaneous symmetry breaking via the Green-Schwarz mechanism takes place.

The equations of motion for this action are:

d " dA1 = ξdC2, (3.4)

d " dC2 = ξG2 + 2πnaδ2(x⊥). (3.5)

There are two ways to solve these equations. First let us solve for C2. The solution of (3.5)

is (in non-compact space):

"dC2 = ξA1 + adφ. (3.6)

where, by analogy with the solution outside the D3-brane, we get the δ function from the

multi-valued φ. Putting this back in Eq.(3.4) we get:

d " dA1 = "(aξdφ + ξ2A1). (3.7)

For the ground state (i.e., n = 0), where φ = 0 (or is a pure gauge), we see that A1 has

mass ξ. The other way to solve this set of coupled equations (3.4,3.5) is to first solve for

A1,

"dA1 = ξC2 + dη1 → ξC2 (3.8)

since we are considering vortices without electric flux, so we expect dη1 = 0. Putting this

back into the equation for C2, we have

d " dC2 = (−) " ξ2C2 + 2πnaδ2(x⊥) (3.9)

where C2 has mass ξ. We can view this system as

– 6 –

L. Leblond and HT
hep-th/0402072



Strings and axions

• A point particle can be charged under a 
gauge field, a one-form field.

• A string is charged under a two-form field.

• In 4-dim., a two-form field (NS-NS or RR) 
is dual to an axion.

• In a typical realistic stringy vacuum, there 
are a number of axions.

• So we expect a variety of cosmic string 
types.         



Scaling of the Cosmic Superstring Network

independent of 
initial conditions

Insensitive to the 
details of the 
interactions

H.T., I. Wasserman, M. Wyman, astro-ph/0503506
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Ωcs =
10ΓGµ

g2
s

M. Jackson, N. Jones and J. Polchinski, hep-th/0405229



Relative density of (p,q) strings 

np,q ∼ µ
−8

p,q

2 4 6

0.0001

0.001

0.01

0.1

1



Cosmic string tension spectrum 
in a warped deformed conifold

S. Gubser, C. Herzog, I. Klebanov, hep-th/0405282,
H. Firouzjahi, L. Leblond, H.T., hep-th/0603161.

One may view the strings as D3-branes wrapping a 2-
cycle inside the S3 at the bottom of the throat.to have a simple (expected) form:

Tp,q ⇥
h2

A

2⇥��

⇥
q2

g2
s

+ (
bM

⇥
)2 sin2(

⇥p

M
), (1.3)

but the way it comes about is interesting. Indeed, the tension is obtained by min-
imizing the Hamiltonian of the D3-brane world volume action after integrating out
the extra dimensions. Care must be taken with the Hamiltonian when one has an
electric field on a D-brane. For example the Chern-Simons terms which do not con-
tribute to the stress energy tensor due to their topological nature nevertheless a�ect
the Hamiltonian (hence the tension and energy) by coming into play via the con-
jugate momentum. This contribution turns out to be crucial here and leads to the
above simple formula (1.3).

This formula has the right limits. Setting either p = 0 or q = 0 reproduces
Eq.(1.2). For M � ⇤ and b = hA = 1, it reduces to Eq.(1.1). Because p is
ZM -charged with non-zero binding energy, binding can take place even if (p, q) are
not coprime. Also, M fundamental strings can terminate to a point-like baryon,
irrespective of the number of D-strings around.

The paper is divided as follows. Sec. 2 reviews the properties of the KS throat
we need. Sec. 3 contains the calculation and the main result. Sec. 4 includes general
discussions and some comments on the issues remaining.

2. A Throat in the Calabi-Yau Manifold

2.1 The Conifold

A cone is defined by the following equation in C4

4�

i=1

w2
i = 0 (2.1)

Here Eq.(2.1) describes a smooth surface apart from the point wi = 0. The geometry
around the conifold is studied in [30]. The base of the cone is a manifold X given
by the intersection of the space of solutions of Eq.(2.1) with a sphere of radius r in
C4 = R8, �

i

|wi|2 = r2

We are interested in Ricci-flat metrics on the cone which in turn imply that
the base of the conifold is a Sasaki-Einstein manifold. The simplest five dimensional
Sasaki-Einstein manifold for N = 1 supersymmetry is T 1,1 and it is the only manifold
for which the deformation is explicitly known [12].

4

(Klebanov-Strassler)

b = 0.93266

M is the RR flux wrapping  S3.



(p,0)

(M-p,0)

Example :
M=5

A baryon with mass

X. Siemens, X. Martin and K. Olum, astro-ph/0005411,
T. Matsuda, hep-th/0509061, . . . .

∼ M3/2hA/
√

α′



Search for Cosmic Strings

• Lensing

• Cosmic Microwave Background Radiation

• Gravitational Wave Burst

• ∆T/T (Doppler effect)

• Pulsar Timing

• Stochastic Gravitation Radiation Background



Possible CMB B-mode detection

^

^



☀
● ●

☀
earth➘

➚

cosmic 
string

|
↓

↑
identify

↓

cosmic string lensing
cosmic string introduces a deficit angle



CSL-1     Sazhin etc. astro-ph/0302547 

1.9 arc sec
⇓

Gµ~ 4 x 10
-7

z=0.46 ± 0.008 identical spectra with confidence level 
above 99.9%



Radio telescope ?

National Radio 
Astronomy Observatory

Recall Cowen and Hu. 



Shami Chatterjee, Jim Cordes, H.T., Ira Wasserman



Unfortunately not (higher resolution Hubble pictures):

January 2006 If it is cosmic string lensing



log(Gµ)

Bound on cosmic string tension 

WMAP

0 ≤ β ≤ 0.05

ns ∼ 0.98 + β

log r ∼ −8.8 + 60β

log Gµ ∼ −9.4 + 30β

U. Seljak and A. Slosar, 
astro-ph/0604143

→ ns ≤ 1.03

ns = 0.95

Gµ < 10
−8

S. Shandera and H.T.,  0601099



cusps and kinks
  are quite common in string evolution

CUSP

h(t) ~ |t|1/3

KINK

h(t) ~ |t| 2/3

Damour and Vilenkin

gravitational wave bursts
wave form of



A cusp

Blanco-Padillo and Olum



Gravitational wave radiation from cusps
                                   Damour and Vilenkin

←      prediction      → 
Log



More recent analysis
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FIG. 2: Comparison of γ (top panel) and η with a year of
observation (bottom panel), as a function of Gµ for several
string models. For all three curves an Initial LIGO ampli-
tude estimate of A50% = 10−20 s−1/3 has been used, and the
cosmological functions have been evaluated in the Λ universe.
The model parameters are identical to those of Fig. 1 except
where indicated. The solid curves show γ and η computed
with a reconnection probability of p = 10−3. The dashed
curves show γ and η computed with a size of loops given by
Eq. (57) with ε = 1, and n = 3/2. The dashed-dot curves
show the combined effect of a low reconnection probability,
p = 10−3, as well as a size of loops given by Eq. (57) with
ε = 1, and n = 3/2.

dropped from order unity to about 10−3 at the matter
era peak. This is illustrated by the difference between the
dashed-dot and thick solid curves of Fig. 1. The dashed-
dot curves were computed using the amplitude estimate
A50% = 10−21 s−1/3 and the Damour-Vilenkin inter-
polating cosmological functions, whereas the thick solid
curves use an amplitude estimate of A50% = 10−20 s−1/3

in the Λ universe.
Cosmic superstrings, however, may still be detectable

by Initial LIGO. Furthermore, if the size of the small-
scale structure is given by gravitational back-reaction,
reasonable estimates for what the size of loops might
be also lead to an enhanced rate of bursts. Figure 2
illustrates this point. All curves use the Initial LIGO
amplitude estimate of A50% = 10−20 s−1/3, and the cos-
mological functions Eqs. (A4), (A6) and (A8) computed
in the Λ universe. The solid curves show γ and η com-
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FIG. 3: Same as Fig. 2 but with the Advanced LIGO ampli-
tude estimate of A50% = 10−21 s−1/3.

puted with a reconnection probability of p = 10−3. The
dashed curves show γ and η computed for loops with a
size given by Eq. (57) with ε = 1, and n = 3/2. This
is the value of n we expect when the spectrum of per-
turbations on long strings is inversely proportional to
the mode number, and the result we expect if the spec-
trum of perturbations on long strings is dominated by the
largest kink [32]. The dashed-dot curves show the com-
bined effect of a low reconnection probability, p = 10−3,
as well as a size of loops given by Eq. (57) with ε = 1,
and n = 3/2. The remaining parameters for all three
curves are identical to those of Fig. 1. Advanced LIGO
has a considerably larger chance of making a detection of
cosmic superstrings or field-theoretic strings if loops are
small. This is illustrated in Fig. 3 which shows the same
string models shown in Fig. 2, with our Advanced LIGO
amplitude estimate of A50% = 10−21 s−1/3.

To summarise, we find the chances of detecting “clas-
sic” strings to be significantly smaller than previous es-
timates suggest. Even Advanced LIGO only has a few
percent chance of detecting “classic” strings at the mat-
ter era peak (see the thin solid line around Gµ ∼ 10−9 in
Fig. 1), though it has a good chance of detecting cosmic
superstrings and cosmic strings with small loops as show
in Fig. 3. Initial LIGO requires the small reconnection
probability of cosmic superstrings and/or small loops to
attain a reasonable chance of detection. It should be

X. Siemens,  J. Creighton, 
I. Maor, S. Majumder, 

K. Cannon and J. Reed, 
gr-qc/0603115
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FIG. 1: Plot of the rate of gravitational wave bursts, γ
(top panel), and the probability η of having at least least
one event in our data set with amplitude larger than A50%

in a year of observation (bottom panel), as a function of Gµ.
For all curves we have set α = ΓGµ, Γ = 50, f∗ = 75 Hz,
c = p = 1, and the ignorance constants g1 = g2 = 1. The
dash-dot and dashed curves show γ and η computed with
the Damour-Vilenkin cosmological functions Eqs. (62), (63)
and (64), with A50% = 10−21 s−1/3, and A50% = 10−20 s−1/3

respectively. The thick and thin solid curves show γ and η
computed in a universe with a cosmological constant with
amplitudes A50% = 10−20 s−1/3, and A50% = 10−21 s−1/3

respectively.

of events in our data set with amplitudes greater than
A50%. In an observation time T the probability of not
having such an event is exp(−γT ). Hence, the odds of
having at least least one event in our data set with am-
plitude larger than our minimum detectable amplitude
is,

η = 1 − e−γT . (65)

Figure 1 shows the rate of burst events, γ, as well
as the probability η of having at least least one event
in our data set with amplitude larger than A50% for a
year of observation, as a function of Gµ for two different
models. For all curves we have set α = ΓGµ, Γ = 50,
f∗ = 75 Hz, c = p = 1, and the ignorance constants
g1 = g2 = 1. We will refer to string models with these pa-
rameters as “classic”, which is appropriate for field theo-
retic strings with loops of size l = ΓGµt. The dashed-dot

and dashed curves of Fig. 1 show γ and η computed us-
ing the Damour-Vilenkin cosmological functions namely,
Eqs. (62), (63) and (64). For the dashed-dot curves we
have used an amplitude estimate of A50% = 10−21 s−1/3.
This amplitude estimate can be obtained using the Ini-
tial LIGO sensitivity curve, setting the SNR threshold to
1, and assuming all cusp events are optimally oriented
(as used for the dashed horizontal lines of Fig. 1 in [13]).
This is also our estimate for the amplitude in the case of
Advanced LIGO. The dashed curves show γ and η com-
puted with the amplitude A50% = 10−20 s−1/3, which we
feel is more appropriate for Initial LIGO. The thick and
thin solid curves show γ and η computed by evaluating
the cosmological functions (Eqs. (A4), (A6) and (A8))
numerically for the Λ universe (see Appendix A). The
thick solid curves correspond to our amplitude estimate
for Initial LIGO, and the thin solid curves to our estimate
for Advanced LIGO.

The functional dependence of the rate of gravitational
wave bursts on Gµ is discussed in detail in Appendix B.
Here we summarise those findings. From left to right,
the first steep rise in the rates as a function of Gµ of
the dashed and dashed-dot curves of Fig. 1 comes from
events produced at small redshifts (z " 1). The peak and
subsequent decrease in the rate starting around Gµ ∼
10−9 comes from events produced at larger redshifts but
still in the matter era (1 " z " zeq). The final rise comes
from events produced in the radiation era (z $ zeq).

For “classic” cosmic strings (p = ε = n = 1), the mat-
ter era maximum in our estimate for the rate of events
at Initial LIGO sensitivity is about 7 × 10−4 events per
year, which is substantially lower than the rate ∼ 1 per
year suggested by the results of Damour and Vilenkin
[11, 12, 13]. The bulk of the difference arises from our
estimate of a detectable amplitude. This is illustrated by
the dashed-dot and dashed curves of Fig. 1, which use the
same cosmological functions, and two estimates for the
amplitude, A50% = 10−21 s−1/3 and A50% = 10−20 s−1/3

respectively. Our amplitude estimate results in a de-
crease in the burst rate by about a factor of 100 at the
matter era peak. A more detailed discussion of the effect
of the amplitude on the rate can be found in Appendix B.
The remaining discrepancy arises from differences in the
cosmology, as well as factors of O(1) that were dropped
in the previous estimates, which account for a further
decrease by factor of about 10. This is illustrated by
the difference between the dashed-dot and thin solid
curves of Fig. 1, which use the same amplitude estimate
A50% = 10−21 s−1/3, and the Damour-Vilenkin cosmo-
logical interpolating functions (Eqs. (62), (63) and (64))
and the Λ universe functions (Eqs. (A4), (A6) and (A8))
respectively. When z << 1, the effects of a cosmological
constant are un-important and differences arise from fac-
tors of O(1) that were dropped in the previous estimates.
For z ! 1, the differences arise from a combination of
the effects of a cosmological constant as well as factors
of O(1). The net effect is that the chances of seeing an
event from “classic” strings using Initial LIGO data have



Number of gravitational wave bursts per year 
Advanced LIGO will see

• 10 (Damour and Vilenkin, 2001)

• 100 or more for cosmic superstrings (2004)

• down by a factor of 100 (2006)

• (p,q) string spectrum raises this by a factor of 
about 5

• lots of loops raises it more

• tension is getting smaller ?

• effect of beads ?



FIG. 1: Predicted gravitational wave backgrounds from strings, and noise sources. Broad band

energy density is shown in units of the critical density for h0 = 1, as a function of frequency, for

α = 0.1. Noise levels are shown for current millisecond pulsar data (MSP), and projected LISA

sensitivity in maximum resolution and Sagnac modes. Confusion noise is shown for massive black

hole binaries (MBHB), the summed Galactic binary population including binary white dwarfs

(UB+WUMa+GCWDB+CV), and extragalactic populations of white dwarfs (XGCWDB) and

neutron stars (XGNSB). Radiation from loop populations at high redshift (H) and present-day (P)

is shown, labled by the value of Gµ. Dotted curves show the contributions of z > 1 loops where

they are subdominant to the P contributions. Current (MSP) sensitivity is at about Gµ ≈ 10−10,

and LISA will reach to around Gµ ≈ 10−15.

population. The fraction of horizon-size loops that needs to stabilize in order for radiation-

era loops to dominate near fpeak is only ≈ (Gµ)1/2(ΩM/
√

30ΩR) ≈ 600(Gµ)1/2 (times some

numerical factors), which is a small number for the light strings we are contemplating. Unless

α is relatively large, accurate estimates of the radiation background will require estimates

of loop spectra with very large dynamic range.
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C. J. Hogan, astro-ph/0605567

R. Caldwell and B. Allen, PRD45, 3447 (1992)



Search for Cosmic Strings 
with low tension

• Lensing

• Cosmic Microwave Background Radiation

• Gravitational Wave Burst

• ∆T/T (Doppler effect)

• Pulsar Timing

• Stochastic Gravitation Radiation Background

• Micro-lensing

• Cusp Doppler effect ?

X
X

X
?



Low tension strings

• Warped geometry can provide very low tension 
cosmic strings.

• They radiate gravitational waves much slower, so 
they live much longer, in particular the small loops.

• The small loops can cluster like dark matter; thus 
their local density is 5 orders of magnitude larger 
than that from the scaling cosmic string network.

2 THE AUTHOR

What is eternal inflation ?

a(t) ⇠ eHt

H2 ⇠ 1/G⇤

Consider a patch of size 1/H.

Suppose T ⇠ 3/H.

The universe would have grown by a factor of e3·3 = e9.
If inflation ends in one patch, there are still many other

(causally disconnected) patches which continue to inflate.

So inflation never ends.

g ⇠ e�Ln

�(g) ⇠ n ln(g/gc)

10

�8 > Gµ > 10

�14

David Chernoff and HT, 0708.4282
Chernoff 0908.4077



Micro-lensing

David Chernoff

the observer-source line of sight. The characteristic Einstein angle is

⇥E = 8⌅Gµ

= 1.04⇥ 10�3

�
Gµ

2⇥ 10�10

⇥
. (3.1)

The characteristic angular size of a stellar source at distance R is ⇥⇥ = R⇥/R. The
relative size is

⇥⇥
⇥E

= 4.6⇥ 10�5

�
2⇥ 10�10

Gµ

⇥ �
100kpc

R

⇥
(3.2)

which implies that the stellar source will generally be well described as a point source.
The relativistically moving and oscillating string will create brightness fluctuations in
the background star that can be searched for in a microlensing experiment.

The actual situation is somewhat more complicated. For a loop, as opposed to a
straight string, one expects lensing like that of a point mass for photons with impact
parameter large compared to the size of the loop and lensing like that of a straight string
for paths that pass close to a segment of the string. We will eschew the full complications
and concentrate on photons that pass near a segment of the string making up the loop.

The characteristic scale of the smallest loops today is

lg = �RGµttoday = 40pc

�
�RGµ

10�8

⇥ �
ttoday

13.5Gyr

⇥
. (3.3)

Such loops are much smaller than the scale of the Galaxy. Both the external and internal
velocities associated with loops are expected to be relativisitic. For comparison, the
characteristic scale of the loops formed at equiparition are

lmax,eq = �U teq = �U14kpc

�
teq

4.7⇥ 104yrs

⇥
. (3.4)

Galactic microlensing suggests R ⇤ 10�100 kpc, probing the full range of loops generated
during the radiative error plus the small end of the loops generated during the matter
era. All this assumes �U order unity.

We want to answer two questions: what is the probability for lensing a single source
at distance R by a distribution of loops at a given instant? How does the probability
grow with time?

Consider a small loop of size l at distance r. It lenses an angular area ⇤L ⇤ (⇥Er)l/r2.
The probability that a single background source at distance R is lensed is the ratio of
the lensed angular area to the observed angular area in the direction of the source. We
find

PL =
d⇤L

d⇤
=

⇤
r2dr

⇤
dN

dV dl

⇥El

r
dl (3.5)

NB Depending upon the application one should take some care about the limits for the
integration over l. One concern is cosmic variance in the estimate of PL: are there many
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was a numerical error of 1/32 in the pc to cm conversion and finally the horizon size
changed from 3 to 4 Gpc or (3/4)2. All in all its a reduction of ⇥ 10�4.

We have estimated the rate RL assuming that the loops are constantly traversing
new areas of the sky. That assumption should be fine as long as the total observing
time is less than the characteristic period of motion of the loop (i.e. if its oscillating
and begins to lense the same parts of the background more than once). The shortest
timescale is for the shortest string to move across its own loop size:

tosc ⇥
lg
c
⇥ 135yrs

�
�RGµ

10�8

⇥
(3.11)

This means that any experiment with duration ⇥T < tosc will be in a linear regime. The
expected number of transient lensed sources from a background population of size NS

observed in an experiment of duration ⇥T is NL = RL⇥TNS.

The characteristic duration of lensing event will be

�t =
R⇥E

c

=
R8⌅Gµ

c

= 6.3� 103sec

�
R

100kpc

⇥ �
Gµ

2� 10�10

⇥
(3.12)

Whats the best that can be done? The Gaia mission will look at about 109 stars for
10 yrs. I don’t know many details but we could estimate that NL ⇥ 0.03 for the typical
parameters. It would appear di⇧cult to get very large values of NL even by pushing
down µ to increase RL. Probably we should do the estimate with a full radiation-
matter-lambda cosmology to get a more secure number though I’m not very optimistic.

4. Lensing of string cusps

It is well known that cusps appear generically somewhere along the string during the
evolution of a typical string loop. Damour and Vilenkin have proposed that these cusps
can radiate gravitational wave bursts. Such gravitational wave beams may be observed.
Here we like to consider the e⇤ect of such cusps on the CMBR. One key di⇤erence is
already clear. Cusps over a large patch of sky will significantly red/blue shift the CMBR
arriving at any observer. That is, this is not a beam e⇤ect.

The probability of detectable lensing on a single line of sight by a population of loops
depends on 3 characteristic quantities:
(1) change in the CMB temperature T by the gravitational scattering,
(2) angular area of the sky subject to the temperature shift, and
(3) number of loops out to z-recombination.
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Rate for LSST (Large Synoptic Survey 
Telescope)... similar to European GAIA
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LSST Rates

Rate for LSST (Large Synoptic Survey Telescope) - - - -
similar for European GAIA

LSST : 4 ⇥ 108 stars observed 103 times each with a 15 s
exposure over a 10 year period. Red for 10 kpc and blue for
100 kpc.
Figure with G = 1; expect G ⇠ 103.
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Superstring theory may be tested

• Instead of searching for tiny particles or signatures in 
accelerators, we can search for distinctive features 
suggested by string theory.

• Steps in the CMB power spectrum suggested by gauge-
gravity duality in a warped throat.

• Production of cosmic superstrings that stretch across the 
universe. The string tensions have the right values so 
these cosmic superstrings are compatible with all present 
day observational bounds and yet can be detected in the 
near future.

• Micro-lensing detection offers the best hope to reach to 
very low tensions and provide very distinctive signatures.  



Thank you !


