Prospects for a measurement of F_L with the ZEUS detector

Daniel Kollár

Max-Planck-Institut für Physik, München

On behalf of ZEUS Collaboration

DIS2006 Tsukuba, Japan, April 20 - 24 2006
\[F_L \text{ in theory} \]

ZEUS experiment measures cross-section

\[
\frac{d^2 \sigma}{d x d Q^2}(x, Q^2) = \frac{2 \pi \alpha^2}{x Q^4} \left[Y + F_2(x, Q^2) - y^2 F_L(x, Q^2) \right]
\]

\[Y_+ = 1 + (1 - y)^2 \]

(at low $Q^2 \Rightarrow xF_3$ neglected)

F_2 — dominant contribution to cross section

F_L — related to cross section of longitudinally polarised photon

– in Quark-Parton Model (QPM): $\sigma_L = 0 \Rightarrow F_L = 0$

– F_L nonzero in pQCD, in LO

\[
F_L = \frac{Q^2}{4 \pi^2 \alpha} \sigma_L
\]

\[
F_L = \frac{\alpha_s}{4 \pi} x^2 \int \frac{d z}{z^3} \left[\frac{16}{3} F_2 + 8 \sum e_q^2 \left(1 - \frac{x}{z} \right) zg \right]
\]

At small x the gluon density dominates

\Rightarrow F_L has never been measured at small x

\Rightarrow measurement of F_L would provide direct access to gluon densities
Status of F_L and gluon densities

- Relatively large uncertainties in gluon densities at small x
- F_L is poorly constrained by present data → different theoretical predictions
- Measurement of F_L → test of our QCD understanding → important input to QCD fits of PDF's

F_{L} measurement with two beam energies

\[
\frac{d^2 \sigma}{dx \, dQ^2} = \frac{2 \pi \alpha^2}{xQ^4} \left(F_2 - \frac{y^2}{Y_+} F_L \right) \left(\tilde{\sigma} \rightarrow \text{reduced cross section} \right)
\]

To separate \(F_2\) and \(F_L\) one needs to measure the cross section at the same \(x\) and \(Q^2\) but different values of \(y\) ⇒ different \(s\) (different beam energies)

\[
F_L(x, Q^2) = \frac{\tilde{\sigma}_1(x, Q^2, y_1) - \tilde{\sigma}_2(x, Q^2, y_2)}{y_2^2/Y_{2+} - y_1^2/Y_{1+}}
\]

larger \(y\) difference
more points (beam energies)
≡ higher accuracy of \(F_L\) measurement
Possible running scenarios

3 months of HERA running at lower proton beam energy:

→ 2 vs. 3 energy points

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>$E_p = 920$ GeV</th>
<th>$E_p = 460$ GeV</th>
<th>$E_p = 690$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 pb$^{-1}$</td>
<td>10 pb$^{-1}$</td>
<td>0 pb$^{-1}$</td>
</tr>
<tr>
<td>2</td>
<td>30 pb$^{-1}$</td>
<td>5 pb$^{-1}$</td>
<td>5 pb$^{-1}$</td>
</tr>
</tbody>
</table>

→ lower energy ⇒ higher precision on F_L (350 GeV ?)

→ to consider — uncertainties with HERA setup times
 — lower luminosity at lower beam energy

→ we assume two beam energies (scenario 1)

→ if accelerator setup and data taking smooth, could try third point at the end
Coverage of the kinematic space

\[E_p = 460 \text{ GeV} \]

Low energy run (LER)

\[E_p = 920 \text{ GeV} \]

Low energy run (LER) + High energy run (HER)

4 – 12 GeV in scattered electron energy in LER \(\Leftrightarrow \) 16 – 20 GeV in scattered electron energy in HER

Best \(F_L \) measurement \(\Rightarrow \) reach highest \(y \) possible
\(\Rightarrow \) lowest possible electron energy in LER
Main issues — Electron finding

Need to reliably recognize the scattered DIS electron down to 4 GeV

- Low Q^2 so electrons mostly in backward direction

Components:

RCAL:
- looking at fraction of energy deposited in the EM part

HES + Presampler:
- looking at the shape of the shower

Tracking:
- photon-electron separation
- central tracking using CTD and MVD has acceptance only up to $\approx 168^\circ$
- SRTD could help, however, behind a lot of material
 \Rightarrow increased $\gamma \rightarrow e^+e^-$ probability
Main issues — Photoproduction background

• largest contribution to background ⇐ large cross section at low Q^2

PhP event:
→ electron irradiates almost a real photon which then interacts with the proton
→ true electron with lower energy goes down the beam pipe
→ one of the particles in the detector recognized as DIS electron

For DIS candidate with valid electron:
→ within acceptance window measure PhP directly
→ normalize PhP Monte Carlo

6m tagger
→ working fine
→ agreement with ZEUS luminosity measurement system within 2%
→ PYTHIA PhP background distribution vs. 6m tagger acceptance (reconstructed as DIS events)

- **positron running advantageous** over electron running
 → lower energy
- for e^+ running 6m tagger identifies 25% of php events
- possibly measure php and normalize MC
Details of the study

Use Monte Carlo to estimate the precision of the F_L extraction with the ZEUS detector

➔ in HER select events with electron candidate with
 \(16 \text{ GeV} < E_e < 20 \text{ GeV}, \ \ 160^{\circ} < \theta_e < 172^{\circ} \)

➔ in LER select events with electron candidate with
 \(4 \text{ GeV} < E_e < 12 \text{ GeV}, \ \ 150^{\circ} < \theta_e < 168^{\circ} , \ \text{require track} \ \text{for} \ E_e < 10 \text{ GeV} \)

➔ use 6m tagger to reject PhP if within the acceptance

<table>
<thead>
<tr>
<th>Systematic checks:</th>
<th>Varied by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Photoproduction background normalization</td>
<td>10%</td>
</tr>
<tr>
<td>→ Electron finding inefficiency (including trigger)</td>
<td>10%</td>
</tr>
<tr>
<td>→ Energy scale</td>
<td>2% at 4 GeV → 1% at 27.5 GeV</td>
</tr>
<tr>
<td>→ Luminosity uncorrelated</td>
<td>1%</td>
</tr>
<tr>
<td>→ Luminosity correlated</td>
<td>2%</td>
</tr>
</tbody>
</table>
Reconstructed kinematic variables

High energy run

- Q^2_{el}
- y_{el}
- $\log_{10} x_{el}$
- $E - p_z$
- E_e
- θ_e

Low energy run

- Q^2_{el}
- y_{el}
- $\log_{10} x_{el}$
- $E - p_z$
- E_e
- θ_e

PhP background is a problem for Low energy run (for low energy electrons)

- $4 \text{ GeV} < E_e < 12 \text{ GeV}$
 - $150^\circ < \theta_e < 168^\circ$
- $16 \text{ GeV} < E_e < 20 \text{ GeV}$
 - $160^\circ < \theta_e < 172^\circ$

(normalized to 1 pb$^{-1}$)
Uncertainties of F_L extraction

Low Q^2: small stat., big syst.

Note: F_L values set to $0.2 F_2$

Largest systematics from:
PhP background normalization and EF inefficiency

High Q^2: big stat., small syst.
Hadron-electron separation using shower size in the calorimeter

HES:
- Silicon diodes at $4X_0$ in the EMC
- ~ shower maximum for several GeV electrons
- Small interaction probability for hadrons

PRESAMPLER:
- Scintillator tiles covering EMC
- Energy correction for showers developed in the dead material before reaching cal
- Small output for hadrons

Using HES and Presampler to improve electron finding outside the tracking acceptance.

Under study…
Use Bayesian approach to extract \[R = \frac{F_L}{F_2} \]

→ suppose \(R \) is a constant, i.e. we can combine all bins
→ include all uncertainties
→ MC sample had a value of \(R = 0.2 - 0.3 \)
→ extracted \(R \) uncertainty \(\approx 0.027 \)

Average \(\frac{F_L}{F_2} \) from theoretical predictions:

- CTEQ5D: 0.25
- MRST2002 LO: 0.3
- MRST2004 NLO: 0.18
- MRST2004 NNLO: 0.18

\(R \) in MC = 0.2 - 0.3

\(E_p = 920 \text{ GeV} \quad 30 \text{ pb}^{-1} \)
\(E_p = 460 \text{ GeV} \quad 10 \text{ pb}^{-1} \)

9.5 GeV\(^2 < Q^2 < 45 \text{ GeV}^2\)
Summary

- F_L should be measured
 - basic ingredient in the cross section
 - test of perturbative QCD at small x
 - would bring information on gluon density

- kinematic range and precision of F_L measurement with ZEUS is moderate

- however, there is room for improvement
 - extending Q^2 and x range
 - better electron finding with HES and Presampler
 - better understanding of the PhP background using 6m tagger
 → reduction of the PhP normalization systematics

ZEUS Collaboration has expressed interest in low energy running to the DESY PRC (will be meeting in May)
BACKUP SLIDES
$Q^2 = 9.5, 12, 14.5, 19, 25, 30, 38, 45 \text{ GeV}^2$

\rightarrow 2-6 x points/Q^2 point

\rightarrow Limitation at low Q^2 is tracking requirement

\rightarrow Limitation at high Q^2 is statistics
→ clearly, **electron finding at low energies is a challenge**

→ the ZEUS detector is not the ideal device
 ⇒ we want to perform a NC cross-section measurement at high y
 with current beam energy

→ this will allow to prepare and test detectors and techniques for electron finding and background rejection

New territory for ZEUS F_2 measurement